Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seeing in Words: Learning to Classify through Language Bottlenecks (2307.00028v1)

Published 29 Jun 2023 in cs.CV, cs.AI, cs.CL, and cs.LG

Abstract: Neural networks for computer vision extract uninterpretable features despite achieving high accuracy on benchmarks. In contrast, humans can explain their predictions using succinct and intuitive descriptions. To incorporate explainability into neural networks, we train a vision model whose feature representations are text. We show that such a model can effectively classify ImageNet images, and we discuss the challenges we encountered when training it.

Citations (2)

Summary

We haven't generated a summary for this paper yet.