Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resetting the Optimizer in Deep RL: An Empirical Study (2306.17833v2)

Published 30 Jun 2023 in cs.LG and cs.AI

Abstract: We focus on the task of approximating the optimal value function in deep reinforcement learning. This iterative process is comprised of solving a sequence of optimization problems where the loss function changes per iteration. The common approach to solving this sequence of problems is to employ modern variants of the stochastic gradient descent algorithm such as Adam. These optimizers maintain their own internal parameters such as estimates of the first-order and the second-order moments of the gradient, and update them over time. Therefore, information obtained in previous iterations is used to solve the optimization problem in the current iteration. We demonstrate that this can contaminate the moment estimates because the optimization landscape can change arbitrarily from one iteration to the next one. To hedge against this negative effect, a simple idea is to reset the internal parameters of the optimizer when starting a new iteration. We empirically investigate this resetting idea by employing various optimizers in conjunction with the Rainbow algorithm. We demonstrate that this simple modification significantly improves the performance of deep RL on the Atari benchmark.

Citations (16)

Summary

We haven't generated a summary for this paper yet.