Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Federated Low Rank Matrix Recovery via Alternating GD and Minimization: A Simple Proof (2306.17782v2)

Published 30 Jun 2023 in cs.IT and math.IT

Abstract: This note provides a significantly simpler and shorter proof of our sample complexity guarantee for solving the low rank column-wise sensing problem using the Alternating Gradient Descent (GD) and Minimization (AltGDmin) algorithm. AltGDmin was developed and analyzed for solving this problem in our recent work. We also provide an improved guarantee.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (9)
  1. S. Babu, S. G. Lingala, and N. Vaswani, “Fast low rank compressive sensing for accelerated dynamic MRI,” IEEE Trans. Comput. Imaging, 2023.
  2. S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei, “Few-shot learning via learning the representation, provably,” in Intnl. Conf. Learning Representations (ICLR), 2021.
  3. S. Nayer and N. Vaswani, “Fast and sample-efficient federated low rank matrix recovery from column-wise linear and quadratic projections,” IEEE Trans. Info. Th., Feb. 2023.
  4. P. Netrapalli, P. Jain, and S. Sanghavi, “Low-rank matrix completion using alternating minimization,” in Annual ACM Symp. on Th. of Comp. (STOC), 2013.
  5. X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for robust pca via gradient descent,” in Neur. Info. Proc. Sys. (NeurIPS), 2016.
  6. C. Ma, K. Wang, Y. Chi, and Y. Chen, “Implicit regularization in nonconvex statistical estimation: Gradient descent converges linearly for phase retrieval, matrix completion and blind deconvolution,” in Intl. Conf. Machine Learning (ICML), 2018.
  7. S. Nayer and N. Vaswani, “Sample-efficient low rank phase retrieval,” IEEE Trans. Info. Th., Dec. 2021.
  8. Y. Cherapanamjeri, K. Gupta, and P. Jain, “Nearly-optimal robust matrix completion,” ICML, 2016.
  9. P.-Å. Wedin, “Perturbation bounds in connection with singular value decomposition,” BIT Numerical Mathematics, vol. 12, no. 1, pp. 99–111, 1972.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com