Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Canonizing Graphs of Bounded Rank-Width in Parallel via Weisfeiler--Leman (2306.17777v3)

Published 30 Jun 2023 in cs.DS, cs.CC, cs.LO, and math.CO

Abstract: In this paper, we show that computing canonical labelings of graphs of bounded rank-width is in $\textsf{TC}{2}$. Our approach builds on the framework of K\"obler & Verbitsky (CSR 2008), who established the analogous result for graphs of bounded treewidth. Here, we use the framework of Grohe & Neuen (ACM Trans. Comput. Log., 2023) to enumerate separators via split-pairs and flip functions. In order to control the depth of our circuit, we leverage the fact that any graph of rank-width $k$ admits a rank decomposition of width $\leq 2k$ and height $O(\log n)$ (Courcelle & Kant\'e, WG 2007). This allows us to utilize an idea from Wagner (CSR 2011) of tracking the depth of the recursion in our computation. Furthermore, after splitting the graph into connected components, it is necessary to decide isomorphism of said components in $\textsf{TC}{1}$. To this end, we extend the work of Grohe & Neuen (ibid.) to show that the $(6k+3)$-dimensional Weisfeiler--Leman (WL) algorithm can identify graphs of rank-width $k$ using only $O(\log n)$ rounds. As a consequence, we obtain that graphs of bounded rank-width are identified by $\textsf{FO} + \textsf{C}$ formulas with $6k+4$ variables and quantifier depth $O(\log n)$. Prior to this paper, isomorphism testing for graphs of bounded rank-width was not known to be in $\textsf{NC}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. Computational Complexity: A Modern Approach. 01 2009. doi:10.1017/CBO9780511804090.
  2. V. Arvind and Piyush P. Kurur. Graph isomorphism is in SPP. Information and Computation, 204(5):835–852, 2006. doi:10.1016/j.ic.2006.02.002.
  3. László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In STOC’16—Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, pages 684–697. ACM, New York, 2016. Preprint of full version at arXiv:1512.03547v2 [cs.DS]. doi:10.1145/2897518.2897542.
  4. László Babai. Canonical form for graphs in quasipolynomial time: Preliminary report. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 1237–1246, New York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3313276.3316356.
  5. Random graph isomorphism. SIAM Journal on Computing, 9(3):628–635, 1980. doi:10.1137/0209047.
  6. Isomorphism of graphs with bounded eigenvalue multiplicity. In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC ’82, page 310–324, New York, NY, USA, 1982. Association for Computing Machinery. doi:10.1145/800070.802206.
  7. Superpolynomial circuits, almost sparse oracles and the exponential hierarchy. In R. K. Shyamasundar, editor, Foundations of Software Technology and Theoretical Computer Science, 12th Conference, New Delhi, India, December 18-20, 1992, Proceedings, volume 652 of Lecture Notes in Computer Science, pages 116–127. Springer, 1992. doi:10.1007/3-540-56287-7\_99.
  8. Canonical labelling of graphs in linear average time. In 20th Annual Symposium on Foundations of Computer Science (SFCS 1979), pages 39–46, 1979. doi:10.1109/SFCS.1979.8.
  9. Computational complexity and the classification of finite simple groups. In 24th Annual Symposium on Foundations of Computer Science (sfcs 1983), pages 162–171, 1983. doi:10.1109/SFCS.1983.10.
  10. Canonical labeling of graphs. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, page 171–183, New York, NY, USA, 1983. Association for Computing Machinery. doi:10.1145/800061.808746.
  11. Permutation groups in NC. In STOC 1987, STOC ’87, pages 409–420, New York, NY, USA, 1987. Association for Computing Machinery. doi:10.1145/28395.28439.
  12. Hans L. Bodlaender. NC-algorithms for graphs with small treewidth. In J. van Leeuwen, editor, Graph-Theoretic Concepts in Computer Science, pages 1–10, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg. doi:10.1007/3-540-50728-0_32.
  13. Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms, 11(4):631–643, 1990. doi:10.1016/0196-6774(90)90013-5.
  14. Béla Bollobás. Distinguishing vertices of random graphs. In Béla Bollobás, editor, Graph Theory, volume 62 of North-Holland Mathematics Studies, pages 33–49. North-Holland, 1982. doi:10.1016/S0304-0208(08)73545-X.
  15. An optimal lower bound on the number of variables for graph identification. Combinatorica, 12(4):389–410, 1992. Originally appeared in SFCS ’89. doi:10.1007/BF01305232.
  16. Graph operations characterizing rank-width and balanced graph expressions. pages 66–75, 06 2007. doi:10.1007/978-3-540-74839-7_7.
  17. Isomorphism of graph classes related to the circular-ones property. Discrete Mathematics & Theoretical Computer Science, Vol. 15 no. 1, March 2013. URL: https://dmtcs.episciences.org/625, doi:10.46298/dmtcs.625.
  18. Upper bounds to the clique width of graphs. Discrete Applied Mathematics, 101(1):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.
  19. On nc algorithms for problems on bounded rank-width graphs. Information Processing Letters, 139:64–67, 2018. doi:10.1016/j.ipl.2018.07.007.
  20. Planar graph isomorphism is in log-space. In 2009 24th Annual IEEE Conference on Computational Complexity, pages 203–214, 2009. doi:10.1109/CCC.2009.16.
  21. Restricted space algorithms for isomorphism on bounded treewidth graphs. Information and Computation, 217:71–83, 2012. doi:10.1016/j.ic.2012.05.003.
  22. Mathematical Logic. Springer, 2 edition, 1994. doi:10.1007/978-1-4757-2355-7.
  23. Embedding and canonizing graphs of bounded genus in logspace. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, page 383–392, New York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2591796.2591865.
  24. Canonizing graphs of bounded tree width in logspace. ACM Trans. Comput. Theory, 9(3), oct 2017. doi:10.1145/3132720.
  25. Wildness for tensors. Lin. Alg. Appl., 566:212–244, 2019. Preprint arXiv:1810.09219 [math.RT]. doi:10.1016/j.laa.2018.12.022.
  26. A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus. In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC ’80, page 236–243, New York, NY, USA, 1980. Association for Computing Machinery. doi:10.1145/800141.804671.
  27. Normal forms for trivalent graphs and graphs of bounded valence. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, page 161–170, New York, NY, USA, 1983. Association for Computing Machinery. doi:10.1145/800061.808745.
  28. A Linear Upper Bound on the Weisfeiler-Leman Dimension of Graphs of Bounded Genus. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 117:1–117:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2019.117.
  29. Logarithmic Weisfeiler-Leman Identifies All Planar Graphs. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics (LIPIcs), pages 134:1–134:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2021.134.
  30. Structure theorem and isomorphism test for graphs with excluded topological subgraphs. SIAM Journal on Computing, 44(1):114–159, 2015. doi:10.1137/120892234.
  31. Canonisation and definability for graphs of bounded rank width. ACM Trans. Comput. Log., 24(1):6:1–6:31, 2023. doi:10.1145/3568025.
  32. A faster isomorphism test for graphs of small degree. SIAM Journal on Computing, 0(0):FOCS18–1–FOCS18–36, 0. doi:10.1137/19M1245293.
  33. An improved isomorphism test for bounded-tree-width graphs. ACM Trans. Algorithms, 16(3), 06 2020. doi:10.1145/3382082.
  34. Isomorphism problems for tensors, groups, and cubic forms: completeness and reductions. arXiv:1907.00309 [cs.CC], 2019. doi:10.48550/ARXIV.1907.00309.
  35. Martin Grohe. Isomorphism testing for embeddable graphs through definability. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC ’00, page 63–72, New York, NY, USA, 2000. Association for Computing Machinery. doi:10.1145/335305.335313.
  36. Martin Grohe. Fixed-point definability and polynomial time on graphs with excluded minors. J. ACM, 59(5), nov 2012. doi:10.1145/2371656.2371662.
  37. Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory, volume 47 of Lecture Notes in Logic. Association for Symbolic Logic, Ithaca, NY; Cambridge University Press, Cambridge, 2017. doi:10.1017/9781139028868.
  38. Isomorphism testing for graphs of bounded rank width. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 1010–1029, 2015. doi:10.1109/FOCS.2015.66.
  39. Testing graph isomorphism in parallel by playing a game. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I, volume 4051 of Lecture Notes in Computer Science, pages 3–14. Springer, 2006. doi:10.1007/11786986_2.
  40. Lauri Hella. Definability hierarchies of generalized quantifiers. Annals of Pure and Applied Logic, 43(3):235 – 271, 1989. doi:10.1016/0168-0072(89)90070-5.
  41. Lauri Hella. Logical hierarchies in PTIME. Information and Computation, 129(1):1–19, 1996. doi:10.1006/inco.1996.0070.
  42. Linear time algorithm for isomorphism of planar graphs (preliminary report). In Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC ’74, page 172–184, New York, NY, USA, 1974. Association for Computing Machinery. doi:10.1145/800119.803896.
  43. Describing graphs: A first-order approach to graph canonization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, pages 59–81. Springer New York, New York, NY, 1990. doi:10.1007/978-1-4612-4478-3_5.
  44. Approximating clique-width and branch-width. Journal of Combinatorial Theory, Series B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.
  45. Which problems have strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001. doi:10.1006/jcss.2001.1774.
  46. Interval graphs: Canonical representations in logspace. SIAM Journal on Computing, 40(5):1292–1315, 2011. doi:10.1137/10080395X.
  47. On the isomorphism problem for helly circular-arc graphs. Information and Computation, 247:266–277, 2016. doi:10.1016/j.ic.2016.01.006.
  48. The Weisfeiler–Leman dimension of planar graphs is at most 3. J. ACM, 66(6), November 2019. doi:10.1145/3333003.
  49. Graph isomorphism for graph classes characterized by two forbidden induced subgraphs. Discrete Applied Mathematics, 216:240–253, 2017. Special Graph Classes and Algorithms — in Honor of Professor Andreas Brandstädt on the Occasion of His 65th Birthday. doi:10.1016/j.dam.2014.10.026.
  50. Graph isomorphism is low for PP. Comput. Complex., 2:301–330, 1992. doi:10.1007/BF01200427.
  51. Ludek Kucera. Canonical labeling of regular graphs in linear average time. SFCS ’87, page 271–279, USA, 1987. IEEE Computer Society. doi:10.1109/SFCS.1987.11.
  52. From invariants to canonization in parallel. In Edward A. Hirsch, Alexander A. Razborov, Alexei Semenov, and Anatol Slissenko, editors, Computer Science – Theory and Applications, pages 216–227, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. doi:10.1007/978-3-540-79709-8_23.
  53. Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–171, January 1975. doi:10.1145/321864.321877.
  54. Leonid Libkin. Elements of Finite Model Theory. Springer, 2004. doi:10.1007/978-3-662-07003-1_1.
  55. Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth. SIAM Journal on Computing, 46(1):161–189, 2017. doi:10.1137/140999980.
  56. Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences, 25(1):42–65, 1982. doi:10.1016/0022-0000(82)90009-5.
  57. Rudolf Mathon. A note on the graph isomorphism counting problem. Information Processing Letters, 8(3):131–136, 1979. doi:10.1016/0020-0190(79)90004-8.
  58. Gary Miller. Isomorphism testing for graphs of bounded genus. In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC ’80, page 225–235, New York, NY, USA, 1980. Association for Computing Machinery. doi:10.1145/800141.804670.
  59. An exponential lower bound for individualization-refinement algorithms for graph isomorphism. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 138–150. ACM, 2018. doi:10.1145/3188745.3188900.
  60. Sang-il Oum. Rank-width is less than or equal to branch-width. Journal of Graph Theory, 57(3):239–244, 2008. doi:10.1002/jgt.20280.
  61. Ilia Ponomarenko. The isomorphism problem for classes of graphs closed under contraction. Journal of Mathematical Sciences, 55:1621–1643, 06 1991. doi:10.1007/BF01098279.
  62. Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), sep 2008. doi:10.1145/1391289.1391291.
  63. Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer and System Sciences, 37(3):312 – 323, 1988. doi:10.1016/0022-0000(88)90010-4.
  64. Pascal Schweitzer. Towards an isomorphism dichotomy for hereditary graph classes. Theory Comput. Syst., 61(4):1084–1127, 2017. doi:10.1007/S00224-017-9775-8.
  65. Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, pages 77–82. ACM, 1987. doi:10.1145/28395.28404.
  66. Jacobo Torán. On the hardness of graph isomorphism. SIAM J. Comput., 33(5):1093–1108, 2004. doi:10.1137/S009753970241096X.
  67. The isomorphism problem for planar 3-connected graphs is in unambiguous logspace. Theory Comput. Syst., 47(3):655–673, 2010. doi:10.1007/S00224-009-9188-4.
  68. Oleg Verbitsky. Planar graphs: Logical complexity and parallel isomorphism tests. STACS’07, page 682–693, Berlin, Heidelberg, 2007. Springer-Verlag. doi:10.5555/1763424.1763505.
  69. Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in Theoretical Computer Science. An EATCS Series. Springer, 1999. doi:10.1007/978-3-662-03927-4.
  70. Fabian Wagner. Graphs of bounded treewidth can be canonized in AC1superscriptAC1\textsf{AC}^{1}AC start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT. In Proceedings of the 6th International Conference on Computer Science: Theory and Applications, CSR’11, page 209–222, Berlin, Heidelberg, 2011. Springer-Verlag. doi:10.1007/978-3-642-20712-9_16.
  71. Complexity zoo. URL: https://complexityzoo.net.

Summary

We haven't generated a summary for this paper yet.