Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete nonlinear elastodynamics in a port-Hamiltonian framework (2306.17740v2)

Published 30 Jun 2023 in math.DS, cs.CE, cs.NA, cs.SY, eess.SY, and math.NA

Abstract: We provide a fully nonlinear port-Hamiltonian formulation for discrete elastodynamical systems as well as a structure-preserving time discretization. The governing equations are obtained in a variational manner and represent index-1 differential algebraic equations. Performing an index reduction one obtains the port-Hamiltonian state space model, which features the nonlinear strains as an independent state next to position and velocity. Moreover, hyperelastic material behavior is captured in terms of a nonlinear stored energy function. The model exhibits passivity and losslessness and has an underlying symmetry yielding the conservation of angular momentum. We perform temporal discretization using the midpoint discrete gradient, such that the beneficial properties are inherited by the developed time stepping scheme in a discrete sense. The numerical results obtained in a representative example are demonstrated to validate the findings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. Modeling and control of complex physical systems: The port-Hamiltonian approach. Springer, Berlin, 2009. doi: 10.1007/978-3-642-03196-0.
  2. A port-Hamiltonian approach to modeling the structural dynamics of complex systems. Appl. Math. Model., 89:1528–1546, 2021. doi: 10.1016/j.apm.2020.07.038.
  3. Port-Hamiltonian flexible multibody dynamics. Multibody Syst. Dyn., 51(3):343–375, 2021. doi: 10.1007/s11044-020-09758-6.
  4. Port-Hamiltonian FE models for filaments. IFAC-PapersOnLine, 55(30):353–358, 2022. doi: 10.1016/j.ifacol.2022.11.078.
  5. Port-Hamiltonian formulation and structure-preserving discretization of hyperelastic strings. arXiv:2304.10957 [math.DS], 2023a. doi: 10.48550/arXiv.2304.10957.
  6. Oscar Gonzalez. Time integration and discrete Hamiltonian systems. J. Nonlinear Sci., 6:449–467, 1996. doi: 10.1007/BF02440162.
  7. Introduction to Mechanics and Symmetry. Springer, New York, 1999. doi: 10.1007/978-0-387-21792-5.
  8. G. H. Livens. IX. – On Hamilton’s principle and the modified function in analytical dynamics. Proc. R. Soc. Edinb., 39:113–119, 1920. doi: 10.1017/S0370164600018617.
  9. The GGL variational principle for constrained mechanical systems. Multibody Syst. Dyn., 57:211–236, 2023b. doi: 10.1007/s11044-023-09889-6.
  10. Structure-preserving integrators based on a new variational principle for constrained mechanical systems. Nonlinear Dyn., 2023c. doi: 10.1007/s11071-023-08522-7.
  11. A simultaneous space-time discretization approach to the inverse dynamics of geometrically exact strings. Int. J. Numer. Methods Eng., 123(11):2573–2609, 2022. doi: 10.1002/nme.6951.
  12. An energy–momentum consistent method for transient simulations with mixed finite elements developed in the framework of geometrically exact shells. Int. J. Numer. Methods Eng., 108(5):423–455, 2016. doi: 10.1002/nme.5217.
  13. Linear port-Hamiltonian descriptor systems. Math. Control Signals Syst., 30:1–27, 2018. doi: 10.1007/s00498-018-0223-3.
  14. Structure-preserving discretization for port-Hamiltonian descriptor systems. In Proc. 58th IEEE CDC, pages 6863–6868, Nice, France, 2019. doi: 10.1109/CDC40024.2019.9030180.
  15. Geometric numerical integration. Springer, Berlin, 2006. doi: 10.1007/3-540-30666-8.
  16. Donald Greenspan. Conservative numerical methods for x¨=f⁢(x)¨𝑥𝑓𝑥\ddot{x}=f(x)over¨ start_ARG italic_x end_ARG = italic_f ( italic_x ). J. Comput. Phys., 56(1):28–41, 1984. doi: 10.1016/0021-9991(84)90081-0.
  17. metis, version 1.0.8, 2023. GitHub repository, doi: 10.5281/zenodo.8094967.
Citations (4)

Summary

We haven't generated a summary for this paper yet.