Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Connected Spatially Coupled LDPC Codes with Improved Termination (2306.17451v1)

Published 30 Jun 2023 in cs.IT, eess.SP, and math.IT

Abstract: This paper investigates the design of self-connected spatially coupled low-density parity-check (SC-LDPC) codes. First, a termination method is proposed to reduce rate loss. Particularly, a single-side open SC-LDPC ensemble is introduced, which halves the rate loss of a conventional terminated SC-LDPC by reducing the number of check nodes. We further propose a self-connection method that allows reliable information to propagate from several directions to improve the decoding threshold. We demonstrate that the proposed ensembles not only achieve a better trade-off between rate loss and gap to capacity than several existing protograph SC-LDPC codes with short chain lengths but also exhibit threshold saturation behavior. Finite blocklength error performance is provided to exemplify the superiority of the proposed codes over conventional protograph SC-LDPC codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. A. Jimenez Felstrom and K. Zigangirov, “Time-varying periodic convolutional codes with low-density parity-check matrix,” IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 2181–2191, 1999.
  2. M. Lentmaier, D. G. M. Mitchell, G. Fettweis, and D. J. Costello, “Asymptotically good LDPC convolutional codes with AWGN channel thresholds close to the Shannon limit,” in Proc. IEEE Int. Symp. Turbo Codes, pp. 324–328, 2010.
  3. M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov, “Iterative decoding threshold analysis for LDPC convolutional codes,” IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274–5289, 2010.
  4. S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803–834, 2011.
  5. S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled ensembles universally achieve capacity under belief propagation,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 7761–7813, 2013.
  6. D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “Spatially coupled LDPC codes constructed from protographs,” IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 4866–4889, 2015.
  7. Y. Xie, L. Yang, P. Kang, and J. Yuan, “Euclidean geometry-based spatially coupled LDPC codes for storage,” IEEE J. Select. Areas Commun., vol. 34, no. 9, pp. 2498–2509, 2016.
  8. F. Jardel and J. J. Boutros, “Non-uniform spatial coupling,” in Proc. IEEE Inf. Theory Workshop, pp. 446–450, 2014.
  9. H.-Y. Kwak, J.-S. No, and H. Park, “Design of irregular SC-LDPC codes with non-uniform degree distributions by linear programming,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2632–2646, 2019.
  10. K. Tazoe, K. Kasai, and K. Sakaniwa, “Efficient termination of spatially-coupled codes,” in Proc. IEEE Inf. Theory Workshop, pp. 30–34, 2012.
  11. M. R. Sanatkar and H. D. Pfister, “Increasing the rate of spatially-coupled codes via optimized irregular termination,” in Proc. IEEE Int. Symp. Turbo Codes, pp. 31–35, 2016.
  12. D. Truhachev, D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “Connecting spatially coupled LDPC code chains,” in Proc. IEEE Intern. Commun. Conf., pp. 2176–2180, 2012.
  13. D. Truhachev, D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “New codes on graphs constructed by connecting spatially coupled chains,” in Proc. Inf. Theory Appl. Workshop, pp. 392–397, 2012.
  14. D. Truhachev, D. G. M. Mitchell, M. Lentmaier, D. J. Costello, and A. Karami, “Code design based on connecting spatially coupled graph chains,” IEEE Trans. Inf. Theory, vol. 65, no. 9, pp. 5604–5617, 2019.
  15. Y. Liao, M. Qiu, and J. Yuan, “Connecting spatially coupled LDPC code chains for bit-interleaved coded modulation,” in Proc. IEEE Int. Symp. Topics in Coding, pp. 1–5, 2021.
  16. A. E. Dehaghani, M.-R. Sadeghi, and F. Amirzade, “Improving asymptotic properties of loop construction of SC-LDPC chains over the BEC,” IEEE Commun. Lett., vol. 26, no. 3, pp. 495–499, 2022.
  17. A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof of threshold saturation for coupled vector recursions,” in Proc. IEEE Inf. Theory Workshop, pp. 25–29, 2012.

Summary

We haven't generated a summary for this paper yet.