2000 character limit reached
Nanohertz gravitational waves from cosmic strings and dark photon dark matter (2306.17390v1)
Published 30 Jun 2023 in hep-ph and astro-ph.CO
Abstract: The recent observations by pulsar timing array (PTA) experiments suggest the existence of stochastic gravitational wave background in the nano-Hz range. It can be a hint for the new physics and cosmic string is one of the promising candidate. In this paper, we study the implication of the PTA result for cosmic strings and dark photon dark matter produced by the decay of cosmic string loops. It can simultaneously explain the PTA result and present dark matter abundance for the dark photon mass m~10{-6}--10{-4}eV. Implications for the gravitational wave detection with multi-frequency bands are also discussed.
- NANOGrav Collaboration, G. Agazie et al., “The NANOGrav 15-year Data Set: Evidence for a Gravitational-Wave Background,” arXiv:2306.16213 [astro-ph.HE].
- J. Antoniadis et al., “The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals,” arXiv:2306.16214 [astro-ph.HE].
- D. J. Reardon et al., “Search for an isotropic gravitational-wave background with the Parkes Pulsar Timing Array,” Astrophys. J. Lett. 951 no. 1, (2023) , arXiv:2306.16215 [astro-ph.HE].
- H. Xu et al., “Searching for the nano-Hertz stochastic gravitational wave background with the Chinese Pulsar Timing Array Data Release I,” arXiv:2306.16216 [astro-ph.HE].
- NANOGrav Collaboration, A. Afzal et al., “The NANOGrav 15-year Data Set: Search for Signals from New Physics,” arXiv:2306.16219 [astro-ph.HE].
- J. Ellis and M. Lewicki, “Cosmic String Interpretation of NANOGrav Pulsar Timing Data,” Phys. Rev. Lett. 126 no. 4, (2021) 041304, arXiv:2009.06555 [astro-ph.CO].
- S. Blasi, V. Brdar, and K. Schmitz, “Has NANOGrav found first evidence for cosmic strings?,” Phys. Rev. Lett. 126 no. 4, (2021) 041305, arXiv:2009.06607 [astro-ph.CO].
- W. Buchmuller, V. Domcke, and K. Schmitz, “From NANOGrav to LIGO with metastable cosmic strings,” Phys. Lett. B 811 (2020) 135914, arXiv:2009.10649 [astro-ph.CO].
- NANOGrav Collaboration, Z. Arzoumanian et al., “The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background,” Astrophys. J. Lett. 905 no. 2, (2020) L34, arXiv:2009.04496 [astro-ph.HE].
- P. W. Graham, J. Mardon, and S. Rajendran, “Vector Dark Matter from Inflationary Fluctuations,” Phys. Rev. D 93 no. 10, (2016) 103520, arXiv:1504.02102 [hep-ph].
- Y. Ema, K. Nakayama, and Y. Tang, “Production of purely gravitational dark matter: the case of fermion and vector boson,” JHEP 07 (2019) 060, arXiv:1903.10973 [hep-ph].
- A. Ahmed, B. Grzadkowski, and A. Socha, “Gravitational production of vector dark matter,” JHEP 08 (2020) 059, arXiv:2005.01766 [hep-ph].
- E. W. Kolb and A. J. Long, “Completely dark photons from gravitational particle production during the inflationary era,” JHEP 03 (2021) 283, arXiv:2009.03828 [astro-ph.CO].
- T. Sato, F. Takahashi, and M. Yamada, “Gravitational production of dark photon dark matter with mass generated by the Higgs mechanism,” JCAP 08 no. 08, (2022) 022, arXiv:2204.11896 [hep-ph].
- M. Redi and A. Tesi, “Dark photon Dark Matter without Stueckelberg mass,” JHEP 10 (2022) 167, arXiv:2204.14274 [hep-ph].
- Y. Nakai, R. Namba, and I. Obata, “Peaky Production of Light Dark Photon Dark Matter,” arXiv:2212.11516 [hep-ph].
- Y. Tang and Y.-L. Wu, “On Thermal Gravitational Contribution to Particle Production and Dark Matter,” Phys. Lett. B 774 (2017) 676–681, arXiv:1708.05138 [hep-ph].
- M. Garny, A. Palessandro, M. Sandora, and M. S. Sloth, “Theory and Phenomenology of Planckian Interacting Massive Particles as Dark Matter,” JCAP 02 (2018) 027, arXiv:1709.09688 [hep-ph].
- P. Agrawal, N. Kitajima, M. Reece, T. Sekiguchi, and F. Takahashi, “Relic Abundance of Dark Photon Dark Matter,” Phys. Lett. B 801 (2020) 135136, arXiv:1810.07188 [hep-ph].
- R. T. Co, A. Pierce, Z. Zhang, and Y. Zhao, “Dark Photon Dark Matter Produced by Axion Oscillations,” Phys. Rev. D 99 no. 7, (2019) 075002, arXiv:1810.07196 [hep-ph].
- M. Bastero-Gil, J. Santiago, L. Ubaldi, and R. Vega-Morales, “Vector dark matter production at the end of inflation,” JCAP 04 (2019) 015, arXiv:1810.07208 [hep-ph].
- J. A. Dror, K. Harigaya, and V. Narayan, “Parametric Resonance Production of Ultralight Vector Dark Matter,” Phys. Rev. D 99 no. 3, (2019) 035036, arXiv:1810.07195 [hep-ph].
- K. Nakayama and W. Yin, “Hidden photon and axion dark matter from symmetry breaking,” JHEP 10 (2021) 026, arXiv:2105.14549 [hep-ph].
- A. J. Long and L.-T. Wang, “Dark Photon Dark Matter from a Network of Cosmic Strings,” Phys. Rev. D 99 no. 6, (2019) 063529, arXiv:1901.03312 [hep-ph].
- N. Kitajima and K. Nakayama, “Dark Photon Dark Matter from Cosmic Strings and Gravitational Wave Background,” arXiv:2212.13573 [hep-ph].
- K. Nakayama, “Vector Coherent Oscillation Dark Matter,” JCAP 10 (2019) 019, arXiv:1907.06243 [hep-ph].
- K. Nakayama, “Constraint on Vector Coherent Oscillation Dark Matter with Kinetic Function,” JCAP 08 (2020) 033, arXiv:2004.10036 [hep-ph].
- N. Kitajima and K. Nakayama, “Viable Vector Coherent Oscillation Dark Matter,” arXiv:2303.04287 [hep-ph].
- R. L. Davis, “Goldstone Bosons in String Models of Galaxy Formation,” Phys. Rev. D 32 (1985) 3172.
- R. L. Davis, “Cosmic Axions from Cosmic Strings,” Phys. Lett. B 180 (1986) 225–230.
- A. Vilenkin and T. Vachaspati, “Radiation of Goldstone Bosons From Cosmic Strings,” Phys. Rev. D 35 (1987) 1138.
- D. Harari and P. Sikivie, “On the Evolution of Global Strings in the Early Universe,” Phys. Lett. B 195 (1987) 361–365.
- R. L. Davis and E. P. S. Shellard, “DO AXIONS NEED INFLATION?,” Nucl. Phys. B 324 (1989) 167–186.
- A. Dabholkar and J. M. Quashnock, “Pinning Down the Axion,” Nucl. Phys. B 333 (1990) 815–832.
- C. Hagmann and P. Sikivie, “Computer simulations of the motion and decay of global strings,” Nucl. Phys. B 363 (1991) 247–280.
- R. A. Battye and E. P. S. Shellard, “Global string radiation,” Nucl. Phys. B 423 (1994) 260–304, arXiv:astro-ph/9311017.
- R. A. Battye and E. P. S. Shellard, “Axion string constraints,” Phys. Rev. Lett. 73 (1994) 2954–2957, arXiv:astro-ph/9403018. [Erratum: Phys.Rev.Lett. 76, 2203–2204 (1996)].
- M. Yamaguchi, M. Kawasaki, and J. Yokoyama, “Evolution of axionic strings and spectrum of axions radiated from them,” Phys. Rev. Lett. 82 (1999) 4578–4581, arXiv:hep-ph/9811311.
- M. Yamaguchi, “Scaling property of the global string in the radiation dominated universe,” Phys. Rev. D 60 (1999) 103511, arXiv:hep-ph/9907506.
- M. Yamaguchi, J. Yokoyama, and M. Kawasaki, “Evolution of a global string network in a matter dominated universe,” Phys. Rev. D 61 (2000) 061301, arXiv:hep-ph/9910352.
- C. Hagmann, S. Chang, and P. Sikivie, “Axion radiation from strings,” Phys. Rev. D 63 (2001) 125018, arXiv:hep-ph/0012361.
- T. Hiramatsu, M. Kawasaki, T. Sekiguchi, M. Yamaguchi, and J. Yokoyama, “Improved estimation of radiated axions from cosmological axionic strings,” Phys. Rev. D 83 (2011) 123531, arXiv:1012.5502 [hep-ph].
- T. Hiramatsu, M. Kawasaki, K. Saikawa, and T. Sekiguchi, “Production of dark matter axions from collapse of string-wall systems,” Phys. Rev. D 85 (2012) 105020, arXiv:1202.5851 [hep-ph]. [Erratum: Phys.Rev.D 86, 089902 (2012)].
- L. Fleury and G. D. Moore, “Axion dark matter: strings and their cores,” JCAP 01 (2016) 004, arXiv:1509.00026 [hep-ph].
- V. B. Klaer and G. D. Moore, “How to simulate global cosmic strings with large string tension,” JCAP 10 (2017) 043, arXiv:1707.05566 [hep-ph].
- M. Gorghetto, E. Hardy, and G. Villadoro, “Axions from Strings: the Attractive Solution,” JHEP 07 (2018) 151, arXiv:1806.04677 [hep-ph].
- M. Kawasaki, T. Sekiguchi, M. Yamaguchi, and J. Yokoyama, “Long-term dynamics of cosmological axion strings,” PTEP 2018 no. 9, (2018) 091E01, arXiv:1806.05566 [hep-ph].
- M. Buschmann, J. W. Foster, and B. R. Safdi, “Early-Universe Simulations of the Cosmological Axion,” Phys. Rev. Lett. 124 no. 16, (2020) 161103, arXiv:1906.00967 [astro-ph.CO].
- M. Hindmarsh, J. Lizarraga, A. Lopez-Eiguren, and J. Urrestilla, “Scaling Density of Axion Strings,” Phys. Rev. Lett. 124 no. 2, (2020) 021301, arXiv:1908.03522 [astro-ph.CO].
- V. B. Klaer and G. D. Moore, “Global cosmic string networks as a function of tension,” JCAP 06 (2020) 021, arXiv:1912.08058 [hep-ph].
- M. Gorghetto, E. Hardy, and G. Villadoro, “More axions from strings,” SciPost Phys. 10 no. 2, (2021) 050, arXiv:2007.04990 [hep-ph].
- M. Hindmarsh, J. Lizarraga, A. Lopez-Eiguren, and J. Urrestilla, “Approach to scaling in axion string networks,” Phys. Rev. D 103 no. 10, (2021) 103534, arXiv:2102.07723 [astro-ph.CO].
- M. Buschmann, J. W. Foster, A. Hook, A. Peterson, D. E. Willcox, W. Zhang, and B. R. Safdi, “Dark matter from axion strings with adaptive mesh refinement,” Nature Commun. 13 no. 1, (2022) 1049, arXiv:2108.05368 [hep-ph].
- J. J. Blanco-Pillado, D. Jiménez-Aguilar, J. M. Queiruga, and J. Urrestilla, “Parametric Resonances in Axionic Cosmic Strings,” arXiv:2212.06194 [hep-th].
- T. Vachaspati and A. Vilenkin, “Gravitational Radiation from Cosmic Strings,” Phys. Rev. D 31 (1985) 3052.
- D. Garfinkle and T. Vachaspati, “Radiation From Kinky, Cuspless Cosmic Loops,” Phys. Rev. D 36 (1987) 2229.
- R. R. Caldwell and B. Allen, “Cosmological constraints on cosmic string gravitational radiation,” Phys. Rev. D 45 (1992) 3447–3468.
- R. R. Caldwell, R. A. Battye, and E. P. S. Shellard, “Relic gravitational waves from cosmic strings: Updated constraints and opportunities for detection,” Phys. Rev. D 54 (1996) 7146–7152, arXiv:astro-ph/9607130.
- T. Damour and A. Vilenkin, “Gravitational wave bursts from cosmic strings,” Phys. Rev. Lett. 85 (2000) 3761–3764, arXiv:gr-qc/0004075.
- T. Damour and A. Vilenkin, “Gravitational wave bursts from cusps and kinks on cosmic strings,” Phys. Rev. D 64 (2001) 064008, arXiv:gr-qc/0104026.
- T. Damour and A. Vilenkin, “Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows,” Phys. Rev. D 71 (2005) 063510, arXiv:hep-th/0410222.
- X. Siemens, V. Mandic, and J. Creighton, “Gravitational wave stochastic background from cosmic (super)strings,” Phys. Rev. Lett. 98 (2007) 111101, arXiv:astro-ph/0610920.
- M. R. DePies and C. J. Hogan, “Stochastic Gravitational Wave Background from Light Cosmic Strings,” Phys. Rev. D 75 (2007) 125006, arXiv:astro-ph/0702335.
- S. Olmez, V. Mandic, and X. Siemens, “Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings,” Phys. Rev. D 81 (2010) 104028, arXiv:1004.0890 [astro-ph.CO].
- P. Binetruy, A. Bohe, C. Caprini, and J.-F. Dufaux, “Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources,” JCAP 06 (2012) 027, arXiv:1201.0983 [gr-qc].
- S. Kuroyanagi, K. Miyamoto, T. Sekiguchi, K. Takahashi, and J. Silk, “Forecast constraints on cosmic string parameters from gravitational wave direct detection experiments,” Phys. Rev. D 86 (2012) 023503, arXiv:1202.3032 [astro-ph.CO].
- S. Kuroyanagi, K. Miyamoto, T. Sekiguchi, K. Takahashi, and J. Silk, “Forecast constraints on cosmic strings from future CMB, pulsar timing and gravitational wave direct detection experiments,” Phys. Rev. D 87 no. 2, (2013) 023522, arXiv:1210.2829 [astro-ph.CO]. [Erratum: Phys.Rev.D 87, 069903 (2013)].
- C. Ringeval and T. Suyama, “Stochastic gravitational waves from cosmic string loops in scaling,” JCAP 12 (2017) 027, arXiv:1709.03845 [astro-ph.CO].
- Y. Cui, M. Lewicki, D. E. Morrissey, and J. D. Wells, “Cosmic Archaeology with Gravitational Waves from Cosmic Strings,” Phys. Rev. D 97 no. 12, (2018) 123505, arXiv:1711.03104 [hep-ph].
- Y. Gouttenoire, G. Servant, and P. Simakachorn, “Beyond the Standard Models with Cosmic Strings,” JCAP 07 (2020) 032, arXiv:1912.02569 [hep-ph].
- M. Gorghetto, E. Hardy, and H. Nicolaescu, “Observing invisible axions with gravitational waves,” JCAP 06 (2021) 034, arXiv:2101.11007 [hep-ph].
- C.-F. Chang and Y. Cui, “Gravitational waves from global cosmic strings and cosmic archaeology,” JHEP 03 (2022) 114, arXiv:2106.09746 [hep-ph].
- A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects. Cambridge University Press, 7, 2000.
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “Constraints on cosmic strings using data from the first Advanced LIGO observing run,” Phys. Rev. D 97 no. 10, (2018) 102002, arXiv:1712.01168 [gr-qc].
- LIGO Scientific Collaboration, J. Aasi et al., “Advanced LIGO,” Class. Quant. Grav. 32 (2015) 074001, arXiv:1411.4547 [gr-qc].
- VIRGO Collaboration, F. Acernese et al., “Advanced Virgo: a second-generation interferometric gravitational wave detector,” Class. Quant. Grav. 32 no. 2, (2015) 024001, arXiv:1408.3978 [gr-qc].
- M. Punturo et al., “The Einstein Telescope: A third-generation gravitational wave observatory,” Class. Quant. Grav. 27 (2010) 194002.
- N. Bartolo et al., “Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves,” JCAP 12 (2016) 026, arXiv:1610.06481 [astro-ph.CO].
- G. Janssen et al., “Gravitational wave astronomy with the SKA,” PoS AASKA14 (2015) 037, arXiv:1501.00127 [astro-ph.IM].
- R. van Haasteren et al., “Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data,” Mon. Not. Roy. Astron. Soc. 414 no. 4, (2011) 3117–3128, arXiv:1103.0576 [astro-ph.CO]. [Erratum: Mon.Not.Roy.Astron.Soc. 425, 1597 (2012)].
- K. Schmitz, “New Sensitivity Curves for Gravitational-Wave Signals from Cosmological Phase Transitions,” JHEP 01 (2021) 097, arXiv:2002.04615 [hep-ph].
- K. Schmitz, “New Sensitivity Curves for Gravitational-Wave Experiments (Version v1) [Data set],” https://doi.org/10.5281/zenodo.3689582 (2020) .
- V. Cardoso, O. J. C. Dias, G. S. Hartnett, M. Middleton, P. Pani, and J. E. Santos, “Constraining the mass of dark photons and axion-like particles through black-hole superradiance,” JCAP 03 (2018) 043, arXiv:1801.01420 [gr-qc].
- A. Caputo, A. J. Millar, C. A. J. O’Hare, and E. Vitagliano, “Dark photon limits: A handbook,” Phys. Rev. D 104 no. 9, (2021) 095029, arXiv:2105.04565 [hep-ph].