Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Steganographic Capacity of Deep Learning Models (2306.17189v1)

Published 25 Jun 2023 in cs.CR and cs.LG

Abstract: As machine learning and deep learning models become ubiquitous, it is inevitable that there will be attempts to exploit such models in various attack scenarios. For example, in a steganographic-based attack, information could be hidden in a learning model, which might then be used to distribute malware, or for other malicious purposes. In this research, we consider the steganographic capacity of several learning models. Specifically, we train a Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and Transformer model on a challenging malware classification problem. For each of the resulting models, we determine the number of low-order bits of the trained parameters that can be altered without significantly affecting the performance of the model. We find that the steganographic capacity of the learning models tested is surprisingly high, and that in each case, there is a clear threshold after which model performance rapidly degrades.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Monika Agarwal. Text stegeganographic approaches: A comparison. International Journal of Network Security & Its Applications, 5(1):91–106, 2013.
  2. James Anthony. 60 notable machine learning statistics: 2021/2022 market share & data analysis. https://financesonline.com/machine-learning-statistics/, 2022.
  3. Lewis Carroll. Alice’s Adventures in Wonderland. Macmillan, 1865. https://www.gutenberg.org/ebooks/11.
  4. Hiding messages in DNA microdots. Nature, 399(6736):533–534, 1999.
  5. New directions in cryptography. IEEE Transactions on Information Theory, 22(6):644–654, 1976.
  6. Nikita Duggal. Top 10 machine learning applications and examples in 2022. https://www.simplilearn.com/tutorials/machine-learning-tutorial/machine-learning-applications, 2022.
  7. Andrada Fiscutean. Steganography explained and how to protect against it. https://www.csoonline.com/article/3632146/steganography-explained-and-how-to-protect-against-it.html, 2021.
  8. John. Word of the day: Steganography. https://www.secalliance.com/blog/word-day-steganography, 2017.
  9. Samuel Kim. Pe header analysis for malware detection. Master’s thesis, San Jose State University, 2018.
  10. A review on text steganography techniques. Mathematics, 9(21):2829, 2021.
  11. Microsoft. Trojan:Win32/VB. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/VB, 2007.
  12. Microsoft. VirTool:Win32/CeeInject. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject, 2007.
  13. Microsoft. Win32/Renos. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=Win32/Renos, 2007.
  14. Microsoft. Trojan:Win32/BHO.BO. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO.BO, 2009.
  15. Microsoft. VirTool:Win32/VBInject. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/VBInject&ThreatID=-2147367171, 2010.
  16. Microsoft. Win32/Vobfus. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=win32%2Fvobfus, 2010.
  17. Microsoft. Win32/Winwebsec. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2fWinwebsec, 2010.
  18. Microsoft. Trojan:Win32/Startpage. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage, 2011.
  19. Microsoft. Win32/OnLineGames. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=Win32/OnLineGames, 2015.
  20. Microsoft. Adware:Win32/Adload. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Adload, 2018.
  21. A review on steganography and cryptography. In 2015 International Conference on Advances in Computer Engineering and Applications, pages 119–122, 2015.
  22. Jay Selig. What is machine learning? a definition. https://www.expert.ai/blog/machine-learning-definition/, 2022.
  23. Mark Stamp. Information Security: Principles and Practice. Wiley, 3rd edition, 2021.
  24. Mark Stamp. Introduction to Machine Learning with Applications in Information Security. Chapman and Hall/CRC, 2nd edition, 2022.
  25. James Stanger. The ancient practice of steganography: What is it, how is it used and why do cybersecurity pros need to understand it. https://www.comptia.org/blog/what-is-steganography, 2020.
  26. Multilayer perceptron (MLP). In María Teresa Camacho Olmedo, Martin Paegelow, Jean-Franccois Mas, and Francisco Escobar, editors, Geomatic Approaches for Modeling Land Change Scenarios, pages 451–455. Springer, 2018.
  27. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pages 6000–6010, 2017.
  28. EvilModel: Hiding malware inside of neural network models. https://arxiv.org/abs/2107.08590, 2021.
  29. A. Wieland and C.M. Wallenburg. Dealing with supply chain risks: Linking risk management practices and strategies to performance. International Journal of Physical Distribution & Logistics Management, 42(10):887–905, 2012.
Citations (1)

Summary

We haven't generated a summary for this paper yet.