Can Machines Garden? Systematically Comparing the AlphaGarden vs. Professional Horticulturalists (2306.17162v1)
Abstract: The AlphaGarden is an automated testbed for indoor polyculture farming which combines a first-order plant simulator, a gantry robot, a seed planting algorithm, plant phenotyping and tracking algorithms, irrigation sensors and algorithms, and custom pruning tools and algorithms. In this paper, we systematically compare the performance of the AlphaGarden to professional horticulturalists on the staff of the UC Berkeley Oxford Tract Greenhouse. The humans and the machine tend side-by-side polyculture gardens with the same seed arrangement. We compare performance in terms of canopy coverage, plant diversity, and water consumption. Results from two 60-day cycles suggest that the automated AlphaGarden performs comparably to professional horticulturalists in terms of coverage and diversity, and reduces water consumption by as much as 44%. Code, videos, and datasets are available at https://sites.google.com/berkeley.edu/systematiccomparison.
- Y. Avigal, W. Wong, M. Presten, M. Theis, S. Aeron, A. Deza, S. Sharma, R. Parikh, S. Oehme, S. Carpin, J. H. Viers, S. Vougioukas, and K. Goldberg, “Simulating polyculture farming to learn automation policies for plant diversity and precision irrigation,” IEEE Transactions on Automation Science and Engineering, pp. 1–13, 2022.
- M. E. Bracken, “Monocultures versus polycultures,” in Encyclopedia of Ecology (Second Edition), second edition ed., B. Fath, Ed. Oxford: Elsevier, 2019, pp. 483–486. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780124095489111698
- M. Liebman, “Polyculture cropping systems,” in Agroecology, 2nd ed. CRC Press, num Pages: 14.
- FarmBot. (2021) Farmbot. [Online]. Available: https://farm.bot/
- Y. Avigal, J. Gao, W. Wong, K. Li, G. Pierroz, F. S. Deng, M. Theis, M. Presten, and K. Goldberg, “Simulating polyculture farming to tune automation policies for plant diversity and precision irrigation,” in 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). IEEE, 2020, pp. 238–245.
- Y. Avigal, A. Deza, W. Wong, S. Oehme, M. Presten, M. Theis, J. Chui, P. Shao, H. Huang, A. Kotani, S. Sharma, R. Parikh, M. Luo, S. Mukherjee, S. Carpin, J. H. Viers, S. Vougioukas, and K. Goldberg, “Learning seed placements and automation policies for polyculture farming with companion plants,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 902–908.
- M. Presten, R. Parikh, S. Aeron, S. Mukherjee, S. Adebola, S. Sharma, M. Theis, W. Teitelbaum, and K. Goldberg, “Automated pruning of polyculture plants.”
- F. T. Payen, D. L. Evans, N. Falagán, C. A. Hardman, S. Kourmpetli, L. Liu, R. Marshall, B. R. Mead, and J. A. C. Davies, “How much food can we grow in urban areas? food production and crop yields of urban agriculture: A meta-analysis,” Earth’s Future, vol. 10, no. 8, p. e2022EF002748, 2022, e2022EF002748 2022EF002748. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022EF002748
- E. Dorr, B. Goldstein, A. Horvath, C. Aubry, and B. Gabrielle, “Environmental impacts and resource use of urban agriculture: a systematic review and meta-analysis,” vol. 16, no. 9, p. 093002, publisher: IOP Publishing. [Online]. Available: https://doi.org/10.1088/1748-9326/ac1a39
- M. Verbeek and B. Hardeweg, “From consumer to prosumer: Are small-scale home indoor farms economically viable?” vol. 87, no. 3, pp. 1–12, publisher: International Society for Horticultural Science (ISHS), Leuven, Belgium. [Online]. Available: https://doi.org/10.17660/eJHS.2022/031
- Home - bowery farming. [Online]. Available: https://boweryfarming.com/
- Home - iron ox. [Online]. Available: https://ironox.com/
- T. Stomph, C. Dordas, A. Baranger, J. de Rijk, B. Dong, J. Evers, C. Gu, L. Li, J. Simon, E. S. Jensen et al., “Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles?” in Advances in Agronomy. Elsevier, 2020, vol. 160, no. 1, pp. 1–50.
- J. W. Jones, G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, “The dssat cropping system model,” European journal of agronomy, vol. 18, no. 3-4, pp. 235–265, 2003.
- P. Steduto, T. C. Hsiao, D. Raes, and E. Fereres, “Aquacrop—the fao crop model to simulate yield response to water: I. concepts and underlying principles,” Agronomy Journal, vol. 101, no. 3, pp. 426–437, 2009.
- B. Murdyantoro, D. Sukma Eka Atmaja, and H. Rachmat, “Application design of farmbot based on internet of things (iot),” IJASEIT, vol. 9, 2019.
- N. Correll, N. Arechiga, A. Bolger, M. Bollini, B. Charrow, A. Clayton, F. Dominguez, K. Donahue, S. Dyar, L. Johnson et al., “Building a distributed robot garden,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2009, pp. 1509–1516.
- T. Botterill, S. Paulin, R. Green, S. Williams, J. Lin, V. Saxton, S. Mills, X. Chen, and S. Corbett-Davies, “A robot system for pruning grape vines,” Journal of Field Robotics, vol. 34, no. 6, pp. 1100–1122, 2017.
- F. Á. L. Hernández, M. H. Oramas, and V. M. A. Peregrino, “Autonomous urban garden,” International Journal of Advanced Networking and Applications, vol. 11, no. 3, pp. 4277–4282, 2019.
- E. Van Henten, B. Van Tuijl, J. Hemming, J. Kornet, J. Bontsema, and E. Van Os, “Field test of an autonomous cucumber picking robot,” Biosystems Engineering, vol. 86, no. 3, pp. 305–313, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1537511003001557
- S. Hayashi, K. Ganno, H. Kurosaki, S. Arima, and M. Monta, “Robotic harvesting system for eggplants [solanum melongena] trained in v-shape, 2: Harvesting experiment for eggplants,” Journal of Society of High Technology in Agriculture (Japan), 2003.
- S. Hayashi, K. Shigematsu, S. Yamamoto, K. Kobayashi, Y. Kohno, J. Kamata, and M. Kurita, “Evaluation of a strawberry-harvesting robot in a field test,” vol. 105, no. 2, pp. 160–171. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1537511009002797
- S. Corbett-Davies, T. Botterill, R. Green, and V. Saxton, “An expert system for automatically pruning vines,” in Proceedings of the 27th Conference on Image and Vision Computing New Zealand, ser. IVCNZ ’12. New York, NY, USA: Association for Computing Machinery, 2012, p. 55–60. [Online]. Available: https://doi.org/10.1145/2425836.2425849
- S. Maitra, A. Hossain, M. Brestic, M. Skalicky, P. Ondrisik, H. Gitari, K. Brahmachari, T. Shankar, P. Bhadra, J. B. Palai, J. Jena, U. Bhattacharya, S. K. Duvvada, S. Lalichetti, and M. Sairam, “Intercropping—a low input agricultural strategy for food and environmental security,” Agronomy, vol. 11, no. 2, p. 343, Feb 2021. [Online]. Available: http://dx.doi.org/10.3390/agronomy11020343
- The State of Food and Agriculture 2020. FAO, no. 2020. [Online]. Available: http://www.fao.org/documents/card/en/c/cb1447en
- J. F. Velasco-Muñoz, J. A. Aznar-Sánchez, A. Batlles-delaFuente, and M. D. Fidelibus, “Sustainable irrigation in agriculture: An analysis of global research,” Water, vol. 11, no. 9, 2019. [Online]. Available: https://www.mdpi.com/2073-4441/11/9/1758
- Z. Li, N. Wang, T. Hong, A. Franzen, and J. Li, “Closed-loop drip irrigation control using a hybrid wireless sensor and actuator network,” SCIENCE CHINA Information Sciences, vol. 54, pp. 577–588, 03 2011.
- M. Group. (2021) Teros 10 simple soil moisture sensing. [Online]. Available: https://www.metergroup.com/environment/products/teros-10/
- L. Faria, M. Rocha, Q. de Jong van Lier, and D. Casaroli, “A split-pot experiment with sorghum to test a root water uptake partitioning model,” Plant and Soil, vol. 331, pp. 299–311, 06 2010.
- J. L. Harper et al., “Population biology of plants.” Population biology of plants., 1977.