Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the relevance of acoustic measurements for creating realistic virtual acoustic environments (2306.16967v1)

Published 29 Jun 2023 in cs.SD, eess.AS, and physics.med-ph

Abstract: Geometrical approaches for room acoustics simulation have the advantage of requiring limited computational resources while still achieving a high perceptual plausibility. A common approach is using the image source model for direct and early reflections in connection with further simplified models such as a feedback delay network for the diffuse reverberant tail. When recreating real spaces as virtual acoustic environments using room acoustics simulation, the perceptual relevance of individual parameters in the simulation is unclear. Here we investigate the importance of underlying acoustical measurements and technical evaluation methods to obtain high-quality room acoustics simulations in agreement with dummy-head recordings of a real space. We focus on the role of source directivity. The effect of including measured, modelled, and omnidirectional source directivity in room acoustics simulations was assessed in comparison to the measured reference. Technical evaluation strategies to verify and improve the accuracy of various elements in the simulation processing chain from source, the room properties, to the receiver are presented. Perceptual results from an ABX listening experiment with random speech tokens are shown and compared with technical measures for a ranking of simulation approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. T. Wendt, S. van de Par, and S. Ewert, “A Computationally-Efficient and Perceptually-Plausible Algorithm for Binaural Room Impulse Response Simulation,” Journal of the Audio Engineering Society, vol. 62, no. 11, pp. 748–766, Dec. 2014.
  2. D. Schröder and M. Vorländer, “RAVEN: A Real-Time Framework for the Auralization of Interactive Virtual Environments,” 2011.
  3. B. U. Seeber and S. W. Clapp, “Interactive simulation and free-field auralization of acoustic space with the rtSOFE,” The Journal of the Acoustical Society of America, vol. 141, no. 5_Supplement, pp. 3974–3974, May 2017.
  4. M. Schutte, “Aspects of room acoustics, vision and motion in the human auditory perception of space,” Ph.D. dissertation, Ludwig-Maximilians-Universität München, Jul. 2021.
  5. C. Kirsch, J. Poppitz, T. Wendt, S. Van De Par, and S. D. Ewert, “Spatial Resolution of Late Reverberation in Virtual Acoustic Environments,” Trends in Hearing, vol. 25, p. 233121652110549, Jan. 2021.
  6. H. Steffens, S. van de Par, and S. D. Ewert, “The role of early and late reflections on perception of source orientation,” The Journal of the Acoustical Society of America, vol. 149, no. 4, pp. 2255–2269, Apr. 2021.
  7. F. Stärz, LOH. Kroczek, S. Rosskopf, A. Mühlberger, S. Van de Par, and M. Blau, “Perceptual comparison between the real and the auralized room when being presented with congruent visual stimuli via a head-mounted display,” in Proceedings of the 24th International Congress on Acoustics. International Commission for Acoustics (ICA), 2022.
  8. M. Blau, A. Budnik, M. Fallahi, H. Steffens, S. D. Ewert, and S. Van De Par, “Toward realistic binaural auralizations – perceptual comparison between measurement and simulation-based auralizations and the real room for a classroom scenario,” Acta Acustica, vol. 5, p. 8, 2021.
  9. H. Steffens, S. V. D. Par, and S. D. Ewert, “Perceptual Relevance of Speaker Directivity Modelling in Virtual Rooms.”
  10. M. Blau, A. Budnik, and S. van de Par, “Assessment of perceptual attributes of classroom acoustics: real versus simulated room,” Proceedings of the Institute of Acoustics, vol. 40, p. 9, 2018.
  11. C. Kirsch, T. Wendt, S. Van De Par, H. Hu, and S. D. Ewert, “Computationally-Efficient Simulation of Late Reverberation for Inhomogeneous Boundary Conditions and Coupled Rooms,” Journal of the Audio Engineering Society, vol. 71, no. 4, pp. 186–201, Apr. 2023.
  12. S. D. Ewert, O. Buttler, and H. Hu, “Computationally Efficient Parametric Filter Approximations for Sound-Source Directivity and Head-Related Impulse Responses,” in 2021 Immersive and 3D Audio: From Architecture to Automotive (I3DA), Sep. 2021, pp. 1–6.
  13. R. Kruse, A. Häußler, and S. van de Par, “An omnidirectional loudspeaker based on a ring-radiator,” Applied Acoustics, vol. 74, no. 12, pp. 1374–1377, Dec. 2013.
  14. M. R. Schroeder, “New Method of Measuring Reverberation Time,” p. 5.
  15. A. Novak, P. Lotton, and L. Simon, “Synchronized Swept-Sine: Theory, Application, and Implementation,” Journal of the Audio Engineering Society, vol. 63, no. 10, pp. 786–798, Nov. 2015.
  16. A. Novák, L. Simon, F. Kadlec, and P. Lotton, “Nonlinear System Identification Using Exponential Swept-Sine Signal,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 8, pp. 2220–2229, Aug. 2010.
  17. I. Holube, S. Fredelake, M. Vlaming, and B. Kollmeier, “Development and analysis of an International Speech Test Signal (ISTS),” International Journal of Audiology, vol. 49, no. 12, pp. 891–903, Dec. 2010.
  18. C. F. Eyring, “REVERBERATION TIME IN “DEAD” ROOMS,” The Journal of the Acoustical Society of America, vol. 1, no. 2A, pp. 217–241, Jan. 1930.
  19. H. S. Braren and J. Fels, “A High-Resolution Head-Related Transfer Function Data Set and 3D-Scan of KEMAR,” 2020.
  20. F. Brinkmann, L. Aspöck, D. Ackermann, R. Opdam, M. Vorländer, and S. Weinzierl, “A benchmark for room acoustical simulation. Concept and database,” Applied Acoustics, vol. 176, p. 107867, May 2021.
  21. J. G. Bolaños, A. Mäkivirta, and V. Pulkki, “Automatic Regularization Parameter for Headphone Transfer Function Inversion,” Journal of the Audio Engineering Society, vol. 64, no. 10, pp. 752–761, Oct. 2016.
  22. A. Andreopoulou and B. F. G. Katz, “Identification of perceptually relevant methods of inter-aural time difference estimation,” The Journal of the Acoustical Society of America, vol. 142, no. 2, pp. 588–598, Aug. 2017.
  23. K. Wagener, T. Brand, and B. Kollmeier, “Entwicklung und evaluation eines satztests für die deutsche sprache I-III: Design, optimierung und evaluation des oldenburger satztests,” Z Audiol, vol. 38, no. 1-3, pp. 4–15, 1999.
  24. M. J. Hautus and X. Meng, “Decision strategies in the ABX (matching-to-sample) psychophysical task,” Perception & Psychophysics, vol. 64, no. 1, pp. 89–106, Jan. 2002.
  25. J. Boley and M. Lester, “Statistical Analysis of ABX Results Using Signal Detection Theory,” Signal Detection Theory, p. 7, 2009.
  26. “DIN EN ISO 3382-1:2009-10, Akustik_- Messung von Parametern der Raumakustik_- Teil_1: Aufführungsräume (ISO_3382-1:2009); Deutsche Fassung EN_ISO_3382-1:2009,” Beuth Verlag GmbH, Tech. Rep.
  27. E. Larsen, N. Iyer, C. R. Lansing, and A. S. Feng, “On the minimum audible difference in direct-to-reverberant energy ratio,” The Journal of the Acoustical Society of America, vol. 124, no. 1, pp. 450–461, Jul. 2008.
  28. M. G. Blevins, A. T. Buck, Z. Peng, and L. M. Wang, “Quantifying the just noticeable difference of reverberation time with band-limited noise centered around 1000 Hz using a transformed up-down adaptive method.”
  29. S. Klockgether and S. Van De Par, “Just noticeable differences of spatial cues in echoic and anechoic acoustical environments,” The Journal of the Acoustical Society of America, vol. 140, no. 4, pp. EL352–EL357, Oct. 2016.

Summary

We haven't generated a summary for this paper yet.