Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel approximation of the exponential of Hermitian matrices (2306.16778v1)

Published 29 Jun 2023 in cs.DC, cs.NA, and math.NA

Abstract: In this work, we consider a rational approximation of the exponential function to design an algorithm for computing matrix exponential in the Hermitian case. Using partial fraction decomposition, we obtain a parallelizable method, where the computation reduces to independent resolutions of linear systems. We analyze the effects of rounding errors on the accuracy of our algorithm. We complete this work with numerical tests showing the efficiency of our method and a comparison of its performances with Krylov algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Computing the action of the matrix exponential, with an application to exponential integrators. SIAM Journal on Scientific Computing, 33(2):488–511, 2011.
  2. Padé Approximants. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1996.
  3. B. Beckermann and L. Reichel. Error estimates and evaluation of matrix functions via the faber transform. SIAM Journal on Numerical Analysis, 47(5):3849–3883, 2009.
  4. L. Bergamaschi and M. Vianello. Efficient computation of the exponential operator for large, sparse, symmetric matrices. Numer. Linear Algebra Appl., 7(1):27–45, 2000.
  5. D. Braess. On the conjecture of meinardus on rational approximation of exp⁡(x)𝑥\exp(x)roman_exp ( italic_x ). J. Approx. Theory, 36(4):317–320, 1982.
  6. Chebyshev rational approximations to e−xsuperscript𝑒𝑥e^{-x}italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT in [0,+∞)0[0,+\infty)[ 0 , + ∞ ) and applications to heat-conduction problems. Journal of Approximation Theory, 2(1):50–65, 1969.
  7. Error estimates for polynomial krylov approximations to matrix functions. SIAM Journal on Matrix Analysis and Applications, 30(4):1546–1565, 2009.
  8. Solution of large scale evolutionary problems using rational krylov subspaces with optimized shifts. SIAM Journal on Scientific Computing, 31(5):3760–3780, 2009.
  9. GNU Octave version 5.2.0 manual: a high-level interactive language for numerical computations, 2020.
  10. A. Frommer and V. Simoncini. Stopping criteria for rational matrix functions of hermitian and symmetric matrices. SIAM Journal on Scientific Computing, 30(3):1387–1412, 2008.
  11. E. Gallopoulos and Y. Saad. Efficient parallel solution of parabolic equations: Implicit methods on the cedar multicluster. In J. Dongarra, P. Messina, D. C. Sorensen, and R. G. Voigt, editors, Proc. of the Fourth SIAM Conf. Parallel Processing for Scientific Computing, pages 251–256. SIAM, 1989.
  12. E. Gallopoulos and Y. Saad. Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Statist. Comput., 13(5):1236–1264, 1992.
  13. T. Göckler and V. Grimm. Uniform approximation of v⁢a⁢r⁢p⁢h⁢i𝑣𝑎𝑟𝑝ℎ𝑖varphiitalic_v italic_a italic_r italic_p italic_h italic_i-functions in exponential integrators by a rational krylov subspace method with simple poles. SIAM Journal on Matrix Analysis and Applications, 35(4):1467–1489, 2014.
  14. S. Güttel. Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection. GAMM-Mitt., 36(1):8–31, 2013.
  15. S. Güttel. Rktoolbox guide, Jul 2020.
  16. N. J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.
  17. N. J. Higham. The scaling and squaring method for the matrix exponential revisited. SIAM Rev., 51(4):747–764, 2009.
  18. L. Knizhnerman and V. Simoncini. A new investigation of the extended krylov subspace method for matrix function evaluations. Numerical Linear Algebra with Applications, 17(4):615–638, 2010.
  19. L. Lopez and V. Simoncini. Analysis of projection methods for rational function approximation to the matrix exponential. SIAM Journal on Numerical Analysis, 44(2):613–635, 2006.
  20. Y. Y. Lu. Exponentials of symmetric matrices through tridiagonal reductions. Linear Algebra and its Applications, 279(1):317–324, 1998.
  21. MATLAB version 9.11.0.1769968 (R2021b), 2021.
  22. G. Meinardus. Approximation of Functions: Theory and Numerical Methods. Springer tracts in natural philosophy. Springer, 1967.
  23. C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 45(1):3–49, 2003.
  24. Zero-free parabolic regions for sequences of polynomials. SIAM Journal on Mathematical Analysis, 7(3):344–357, 1976.
  25. A. Schönhage. Zur rationalen approximierbarkeit von e−xsuperscript𝑒𝑥e^{-x}italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT über [0,+∞)0[0,+\infty)[ 0 , + ∞ ). Journal of Approximation Theory, 7(4):395–398, 1973.
  26. Computing exp⁡(−τ⁢A)⁢b𝜏𝐴𝑏\exp(-\tau A)broman_exp ( - italic_τ italic_A ) italic_b with Laguerre polynomials. Electron. Trans. Numer. Anal., 37:147–165, 2010.
  27. G. Szegö. Über einige eigenschaften der exponentialreihe. Sitzungsber. Berl. Math. Ges, 23:50–64, 1924.
  28. L. N. Trefethen. The asymptotic accuracy of rational best approximations to ezsuperscript𝑒𝑧e^{z}italic_e start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT on a disk. Journal of Approximation Theory, 40(4):380–383, 1984.
  29. R. C. Ward. Numerical computation of the matrix exponential with accuracy estimate. SIAM Journal on Numerical Analysis, 14(4):600–610, 1977.
  30. S. M. Zemyan. On the zeroes of the n−t⁢h𝑛𝑡ℎn-thitalic_n - italic_t italic_h partial sum of the exponential series. The American Mathematical Monthly, 112(10):891–909, 2005.
Citations (2)

Summary

We haven't generated a summary for this paper yet.