Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metric-aligned Sample Selection and Critical Feature Sampling for Oriented Object Detection (2306.16718v2)

Published 29 Jun 2023 in cs.CV

Abstract: Arbitrary-oriented object detection is a relatively emerging but challenging task. Although remarkable progress has been made, there still remain many unsolved issues due to the large diversity of patterns in orientation, scale, aspect ratio, and visual appearance of objects in aerial images. Most of the existing methods adopt a coarse-grained fixed label assignment strategy and suffer from the inconsistency between the classification score and localization accuracy. First, to align the metric inconsistency between sample selection and regression loss calculation caused by fixed IoU strategy, we introduce affine transformation to evaluate the quality of samples and propose a distance-based label assignment strategy. The proposed metric-aligned selection (MAS) strategy can dynamically select samples according to the shape and rotation characteristic of objects. Second, to further address the inconsistency between classification and localization, we propose a critical feature sampling (CFS) module, which performs localization refinement on the sampling location for classification task to extract critical features accurately. Third, we present a scale-controlled smooth $L_1$ loss (SC-Loss) to adaptively select high quality samples by changing the form of regression loss function based on the statistics of proposals during training. Extensive experiments are conducted on four challenging rotated object detection datasets DOTA, FAIR1M-1.0, HRSC2016, and UCAS-AOD. The results show the state-of-the-art accuracy of the proposed detector.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. G. S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu, M. Pelillo, and L. Zhang, “Dota: A large-scale dataset for object detection in aerial images,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
  2. K. S. Raghunandan, P. Shivakumara, S. Roy, G. H. Kumar, U. Pal, and T. Lu, “Multi-script-oriented text detection and recognition in video/scene/born digital images,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, pp. 1145–1162, 2019.
  3. J. Han, J. Ding, J. Li, and G. Xia, “Align deep features for oriented object detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–11, 2022.
  4. W. Qian, X. Yang, S. Peng, J. Yan, and X. Zhang, “Rsdet++: Point-based modulated loss for more accurate rotated object detection,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, pp. 7869–7879, 2021.
  5. X. Yang, J. Yan, Z. Feng, and T. He, “R3det: Refined single-stage detector with feature refinement for rotating object,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 4, 2021, pp. 3163–3171.
  6. J. Ding, N. Xue, Y. Long, G. Xia, and Q. Lu, “Learning roi transformer for oriented object detection in aerial images,” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2844–2853, 2019.
  7. S. Zhang, C. Chi, Y. Yao, Z. Lei, and S. Z. Li, “Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9756–9765, 2020.
  8. Q. Ming, Z. Zhou, L. Miao, H. Zhang, and L. Li, “Dynamic anchor learning for arbitrary-oriented object detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3, 2021, pp. 2355–2363.
  9. X. Yang, J. Yan, Q. Ming, W. Wang, X. Zhang, and Q. Tian, “Rethinking rotated object detection with gaussian wasserstein distance loss,” in International Conference on Machine Learning.   PMLR, 2021, pp. 11 830–11 841.
  10. J. Wang, C. Xu, W. Yang, and L. Yu, “A normalized gaussian wasserstein distance for tiny object detection,” ArXiv, vol. abs/2110.13389, 2021.
  11. Z. Huang, W. Li, X.-G. Xia, and R. Tao, “A general gaussian heatmap label assignment for arbitrary-oriented object detection,” IEEE Transactions on Image Processing, vol. 31, pp. 1895–1910, 2022.
  12. X. Sun, P. Wang, Z. Yan, F. Xu, R. Wang, W. Diao, J. Chen, J. Li, Y. Feng, T. Xu et al., “Fair1m: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 184, pp. 116–130, 2022.
  13. Z. Liu, L. Yuan, L. Weng, and Y. Yang, “A high resolution optical satellite image dataset for ship recognition and some new baselines,” in International Conference on Pattern Recognition Applications and Methods, 2017.
  14. H. Zhu, X. Chen, W. Dai, K. Fu, Q. Ye, and J. Jiao, “Orientation robust object detection in aerial images using deep convolutional neural network,” 2015 IEEE International Conference on Image Processing (ICIP), pp. 3735–3739, 2015.
  15. J. Ma, W. Shao, H. Ye, L. Wang, H. Wang, Y. Zheng, and X. Xue, “Arbitrary-oriented scene text detection via rotation proposals,” IEEE Transactions on Multimedia, vol. 20, pp. 3111–3122, 2018.
  16. X. Xie, G. Cheng, J. Wang, X. Yao, and J. Han, “Oriented r-cnn for object detection,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3500–3509, 2021.
  17. X. Pan, Y. Ren, K. Sheng, W. Dong, H. Yuan, X.-W. Guo, C. Ma, and C. Xu, “Dynamic refinement network for oriented and densely packed object detection,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11 204–11 213, 2020.
  18. Z. Guo, X. Zhang, C. Liu, X. Ji, J. Jiao, and Q. Ye, “Convex-hull feature adaptation for oriented and densely packed object detection,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, pp. 5252–5265, 2022.
  19. Y. Xu, M. Fu, Q. Wang, Y. Wang, K. Chen, G. Xia, and X. Bai, “Gliding vertex on the horizontal bounding box for multi-oriented object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, pp. 1452–1459, 2021.
  20. W. Li, Y. Chen, K. Hu, and J. Zhu, “Oriented reppoints for aerial object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1829–1838.
  21. G. Cheng, J. Wang, K. Li, X. Xie, C. Lang, Y. L. Yao, and J. Han, “Anchor-free oriented proposal generator for object detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–11, 2022.
  22. S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, pp. 1137–1149, 2015.
  23. J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” ArXiv, vol. abs/1804.02767, 2018.
  24. T.-Y. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, pp. 318–327, 2020.
  25. Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality object detection,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6154–6162, 2018.
  26. B. Cheng, Y. Wei, H. Shi, R. Feris, J. Xiong, and T. Huang, “Revisiting rcnn: On awakening the classification power of faster rcnn,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 453–468.
  27. B. Cheng, Y. Wei, R. Feris, J. Xiong, W.-m. Hwu, T. Huang, and H. Shi, “Decoupled classification refinement: Hard false positive suppression for object detection,” arXiv preprint arXiv:1810.04002, 2018.
  28. S. Zhang, L. Wen, Z. Lei, and S. Li, “Refinedet++: Single-shot refinement neural network for object detection,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, pp. 674–687, 2021.
  29. Y. Wu, Y. Chen, L. Yuan, Z. Liu, L. Wang, H. Li, and Y. R. Fu, “Rethinking classification and localization for object detection,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10 183–10 192, 2020.
  30. C. Feng, Y. Zhong, Y. Gao, M. R. Scott, and W. Huang, “Tood: Task-aligned one-stage object detection,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3490–3499, 2021.
  31. A. Fernández, S. Garcia, F. Herrera, and N. V. Chawla, “Smote for learning from imbalanced data: progress and challenges, marking the 15-year anniversary,” Journal of artificial intelligence research, vol. 61, pp. 863–905, 2018.
  32. Z. Lv, G. Li, Z. Jin, J. A. Benediktsson, and G. M. Foody, “Iterative training sample expansion to increase and balance the accuracy of land classification from vhr imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 1, pp. 139–150, 2020.
  33. T. Yang, X. Zhang, Z. Li, W. Zhang, and J. Sun, “Metaanchor: Learning to detect objects with customized anchors,” Advances in neural information processing systems, vol. 31, 2018.
  34. T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, “Feature pyramid networks for object detection,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944, 2017.
  35. J. Wang, K. Chen, S. Yang, C. C. Loy, and D. Lin, “Region proposal by guided anchoring,” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2960–2969, 2019.
  36. Z. Ge, S. Liu, Z. Li, O. Yoshie, and J. Sun, “Ota: Optimal transport assignment for object detection,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 303–312, 2021.
  37. J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable convolutional networks,” 2017 IEEE International Conference on Computer Vision (ICCV), pp. 764–773, 2017.
  38. H. Zhang, H. Chang, B. Ma, N. Wang, and X. Chen, “Dynamic r-cnn: Towards high quality object detection via dynamic training,” in European conference on computer vision.   Springer, 2020, pp. 260–275.
  39. K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu et al., “Mmdetection: Open mmlab detection toolbox and benchmark,” arXiv preprint arXiv:1906.07155, 2019.
  40. L. Hou, K. Lu, J. Xue, and Y. Li, “Shape-adaptive selection and measurement for oriented object detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2022.
  41. L. Dai, H. Liu, H. Tang, Z. Wu, and P. Song, “Ao2-detr: Arbitrary-oriented object detection transformer,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, pp. 1–1, 2022.
  42. L. Zhou, H. Wei, H. Li, W. Zhao, Y. Zhang, and Y. Zhang, “Arbitrary-oriented object detection in remote sensing images based on polar coordinates,” IEEE Access, vol. 8, pp. 223 373–223 384, 2020.
  43. J. Yi, P. Wu, B. Liu, Q. Huang, H. Qu, and D. N. Metaxas, “Oriented object detection in aerial images with box boundary-aware vectors,” 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2149–2158, 2021.
  44. P. Zhao, Z. Qu, Y. Bu, W. Tan, Y. Ren, and S. Pu, “Polardet: a fast, more precise detector for rotated target in aerial images,” International Journal of Remote Sensing, vol. 42, pp. 5831 – 5861, 2020.
  45. P. Sun, Y. Zheng, Z. Zhou, W. Xu, and Q. Ren, “R4 det: Refined single-stage detector with feature recursion and refinement for rotating object detection in aerial images,” Image and Vision Computing, vol. 103, p. 104036, 2020.
  46. Y. Zheng, P. Sun, Z. Zhou, W. Xu, and Q. Ren, “Adt-det: Adaptive dynamic refined single-stage transformer detector for arbitrary-oriented object detection in satellite optical imagery,” Remote Sensing, vol. 13, no. 13, p. 2623, 2021.
  47. J. Wang, W. Yang, H. Li, H. Zhang, and G. Xia, “Learning center probability map for detecting objects in aerial images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, pp. 4307–4323, 2021.
  48. X. Yang and J. Yan, “Arbitrary-oriented object detection with circular smooth label,” in European Conference on Computer Vision.   Springer, 2020, pp. 677–694.
  49. J. Han, J. Ding, N. Xue, and G. Xia, “Redet: A rotation-equivariant detector for aerial object detection,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2785–2794, 2021.
  50. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992–10 002, 2021.
  51. M. Liao, Z. Zhu, B. Shi, G.-S. Xia, and X. Bai, “Rotation-sensitive regression for oriented scene text detection,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5909–5918, 2018.
  52. Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “Reppoints: Point set representation for object detection,” 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9656–9665, 2019.
  53. X. Yang, L. Hou, Y. Zhou, W. Wang, and J. Yan, “Dense label encoding for boundary discontinuity free rotation detection,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15 814–15 824, 2021.
  54. Q. Ming, L. Miao, Z. Zhou, X. Yang, and Y. Dong, “Optimization for arbitrary-oriented object detection via representation invariance loss,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Peng Sun (210 papers)
  2. Yongbin Zheng (3 papers)
  3. Wenqi Wu (8 papers)
  4. Wanying Xu (1 paper)
  5. Shengjian Bai (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.