Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised MRI Reconstruction with Unrolled Diffusion Models (2306.16654v2)

Published 29 Jun 2023 in eess.IV and cs.CV

Abstract: Magnetic Resonance Imaging (MRI) produces excellent soft tissue contrast, albeit it is an inherently slow imaging modality. Promising deep learning methods have recently been proposed to reconstruct accelerated MRI scans. However, existing methods still suffer from various limitations regarding image fidelity, contextual sensitivity, and reliance on fully-sampled acquisitions for model training. To comprehensively address these limitations, we propose a novel self-supervised deep reconstruction model, named Self-Supervised Diffusion Reconstruction (SSDiffRecon). SSDiffRecon expresses a conditional diffusion process as an unrolled architecture that interleaves cross-attention transformers for reverse diffusion steps with data-consistency blocks for physics-driven processing. Unlike recent diffusion methods for MRI reconstruction, a self-supervision strategy is adopted to train SSDiffRecon using only undersampled k-space data. Comprehensive experiments on public brain MR datasets demonstrates the superiority of SSDiffRecon against state-of-the-art supervised, and self-supervised baselines in terms of reconstruction speed and quality. Implementation will be available at https://github.com/yilmazkorkmaz1/SSDiffRecon.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yilmaz Korkmaz (10 papers)
  2. Vishal M. Patel (230 papers)
  3. Tolga Cukur (7 papers)
Citations (33)

Summary

We haven't generated a summary for this paper yet.