Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalizing Surgical Instruments Segmentation to Unseen Domains with One-to-Many Synthesis (2306.16285v1)

Published 28 Jun 2023 in eess.IV and cs.CV

Abstract: Despite their impressive performance in various surgical scene understanding tasks, deep learning-based methods are frequently hindered from deploying to real-world surgical applications for various causes. Particularly, data collection, annotation, and domain shift in-between sites and patients are the most common obstacles. In this work, we mitigate data-related issues by efficiently leveraging minimal source images to generate synthetic surgical instrument segmentation datasets and achieve outstanding generalization performance on unseen real domains. Specifically, in our framework, only one background tissue image and at most three images of each foreground instrument are taken as the seed images. These source images are extensively transformed and employed to build up the foreground and background image pools, from which randomly sampled tissue and instrument images are composed with multiple blending techniques to generate new surgical scene images. Besides, we introduce hybrid training-time augmentations to diversify the training data further. Extensive evaluation on three real-world datasets, i.e., Endo2017, Endo2018, and RoboTool, demonstrates that our one-to-many synthetic surgical instruments datasets generation and segmentation framework can achieve encouraging performance compared with training with real data. Notably, on the RoboTool dataset, where a more significant domain gap exists, our framework shows its superiority of generalization by a considerable margin. We expect that our inspiring results will attract research attention to improving model generalization with data synthesizing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. An Wang (58 papers)
  2. Mobarakol Islam (65 papers)
  3. Mengya Xu (27 papers)
  4. Hongliang Ren (98 papers)

Summary

We haven't generated a summary for this paper yet.