Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cartesian institutions with evidence: Data and system modelling with diagrammatic constraints and generalized sketches (2306.16284v1)

Published 27 Jun 2023 in cs.LO and math.CT

Abstract: Data constraints are fundamental for practical data modelling, and a verifiable conformance of a data instance to a safety-critical constraint (satisfaction relation) is a corner-stone of safety assurance. Diagrammatic constraints are important as both a theoretical concepts and a practically convenient device. The paper shows that basic formal constraint management can well be developed within a finitely complete category (hence the reference to Cartesianity in the title). In the data modelling context, objects of such a category can be thought of as graphs, while their morphisms play two roles: of data instances and (when being additionally labelled) of constraints. Specifically, a generalized sketch $S$ consists of a graph $G_S$ and a set of constraints $C_S$ declared over $G_S$, and appears as a pattern for typical data schemas (in databases, XML, and UML class diagrams). Interoperability of data modelling frameworks (and tools based on them) very much depends on the laws regulating the transformation of satisfaction relations between data instances and schemas when the schema graph changes: then constraints are translated co- whereas instances contra-variantly. Investigation of this transformation pattern is the main mathematical subject of the paper

Summary

We haven't generated a summary for this paper yet.