Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced Neural Beamformer with Spatial Information for Target Speech Extraction (2306.15942v1)

Published 28 Jun 2023 in cs.SD, cs.AI, and eess.AS

Abstract: Recently, deep learning-based beamforming algorithms have shown promising performance in target speech extraction tasks. However, most systems do not fully utilize spatial information. In this paper, we propose a target speech extraction network that utilizes spatial information to enhance the performance of neural beamformer. To achieve this, we first use the UNet-TCN structure to model input features and improve the estimation accuracy of the speech pre-separation module by avoiding information loss caused by direct dimensionality reduction in other models. Furthermore, we introduce a multi-head cross-attention mechanism that enhances the neural beamformer's perception of spatial information by making full use of the spatial information received by the array. Experimental results demonstrate that our approach, which incorporates a more reasonable target mask estimation network and a spatial information-based cross-attention mechanism into the neural beamformer, effectively improves speech separation performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.