Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Deep Reinforcement Learning-based Bitrate Adaptation for Dynamic Adaptive Streaming over HTTP (2306.15860v1)

Published 28 Jun 2023 in cs.NI

Abstract: In video streaming over HTTP, the bitrate adaptation selects the quality of video chunks depending on the current network condition. Some previous works have applied deep reinforcement learning (DRL) algorithms to determine the chunk's bitrate from the observed states to maximize the quality-of-experience (QoE). However, to build an intelligent model that can predict in various environments, such as 3G, 4G, Wifi, \textit{etc.}, the states observed from these environments must be sent to a server for training centrally. In this work, we integrate federated learning (FL) to DRL-based rate adaptation to train a model appropriate for different environments. The clients in the proposed framework train their model locally and only update the weights to the server. The simulations show that our federated DRL-based rate adaptations, called FDRLABR with different DRL algorithms, such as deep Q-learning, advantage actor-critic, and proximal policy optimization, yield better performance than the traditional bitrate adaptation methods in various environments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.