Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cartan--Helgason theorem for quaternionic symmetric and twistor spaces (2306.15090v2)

Published 26 Jun 2023 in math.RT

Abstract: Let $(\mathfrak{g}, \mathfrak{k})$ be a complex quaternionic symmetric pair with $\mathfrak{k}$ having an ideal $\mathfrak{sl}(2, \mathbb{C})$, $\mathfrak{k}=\mathfrak{sl}(2, \mathbb{C})+\mathfrak{m}c$. Consider the representation $Sm(\mathbb{C}2)=\mathbb{C}{m+1}$ of $\mathfrak{k}$ via the projection onto the ideal $\mathfrak{k}\to \mathfrak{sl}(2, \mathbb{C})$. We study the finite dimensional irreducible representations $V(\lambda)$ of $\mathfrak{g}$ which contain $Sm(\mathbb{C}2)$ under $\mathfrak{k}\subseteq \mathfrak{g}$. We give a characterization of all such representations $V(\lambda)$ and find the corresponding multiplicity $m(\lambda,m)=\dim \operatorname{Hom} (V(\lambda)|\mathfrak{k},Sm(\mathbb{C}2)).$ We consider also the branching problem of $V(\lambda)$ under $\mathfrak{l}=\mathfrak{u}(1){\mathbb{C}} + \mathfrak{m}_c\subseteq \mathfrak{k}$ and find the multiplicities. Geometrically the Lie subalgebra $\mathfrak{l}\subseteq \mathfrak{k}$ defines a twistor space over the compact symmetric space of the compact real form $G_c$ of $G{\mathbb{C}}$, $\text{Lie}(G_{\mathbb{C}})=\mathfrak{g}$, and our results give the decomposition for the $L2$-spaces of sections of certain vector bundles over the symmetric space and line bundles over the twistor space. This generalizes Cartan--Helgason's theorem for symmetric spaces $(\mathfrak{g}, \mathfrak{k})$ and Schlichtkrull's theorem for Hermitian symmetric spaces where one-dimensional representations of $\mathfrak{k}$ are considered.

Summary

We haven't generated a summary for this paper yet.