Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Same-Sign Taus Signatures of Maximally Flavor-Violating Scalars at the LHC (2306.14957v3)

Published 26 Jun 2023 in hep-ph

Abstract: We explore single and double flavor-violating scalar (flavon) production at the 13 and 14 TeV LHC in an effective field theory formulation where flavons always change the flavor of the Standard Model fermions. When those scalars couple to mass, their flavor-changing couplings to top quarks and tau leptons are favored. Focusing on the mass region below the top-quark mass, we find couplings that fit the muon $(g-2)$ discrepancy and avoid several current experimental constraints. We determine the potential of the LHC to exclude or discover such a new physics scenario with clean signatures consisting of same-sign tau leptons and the simultaneous observation of resonances in the tau plus electron or muon invariant mass. We found that in the double production mode, effective couplings down to order $10{-2}$ TeV${-1}$ can be probed for flavon masses in the 10--170 GeV range at the 14 TeV HL-LHC, but couplings down to 0.1 TeV${-1}$ can already be excluded at 95\% confidence level with data collected from the 13 TeV LHC in the same mass interval. We also explore the impact of sizeable diagonal flavon couplings on the prospects of LHC for the signals we propose.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. A. Davidson and K. C. Wali, Phys. Rev. Lett. 48, 11 (1982).
  2. F. Wilczek, Phys. Rev. Lett. 49, 1549 (1982).
  3. D. B. Reiss, Phys. Lett. B 115, 217 (1982).
  4. R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).
  5. G. B. Gelmini and M. Roncadelli, Phys. Lett. B 99, 411 (1981).
  6. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
  7. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
  8. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
  9. J. Jaeckel and A. Ringwald, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010), arXiv:1002.0329 [hep-ph] .
  10. A. Ringwald, J. Phys. Conf. Ser. 485, 012013 (2014), arXiv:1209.2299 [hep-ph] .
  11. C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B 147, 277 (1979).
  12. R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022a).
  13. D. d’Enterria and G. G. da Silveira, Phys. Rev. Lett. 111, 080405 (2013), [Erratum: Phys.Rev.Lett. 116, 129901 (2016)], arXiv:1305.7142 [hep-ph] .
  14. A. M. Sirunyan et al. (CMS), Phys. Lett. B 795, 398 (2019), arXiv:1812.06359 [hep-ex] .
  15. A. M. Sirunyan et al. (CMS), Phys. Lett. B 800, 135087 (2020a), arXiv:1907.07235 [hep-ex] .
  16. G. Aad et al. (ATLAS), Phys. Rev. D 102, 112006 (2020a), arXiv:2005.12236 [hep-ex] .
  17. A. M. Sirunyan et al. (CMS), JHEP 08, 139 (2020b), arXiv:2005.08694 [hep-ex] .
  18. G. Aad et al. (ATLAS), Phys. Rev. D 105, 012006 (2022a), arXiv:2110.00313 [hep-ex] .
  19. G. Aad et al. (ATLAS), Phys. Rev. Lett. 125, 221802 (2020b), arXiv:2004.01678 [hep-ex] .
  20. K. Mimasu and V. Sanz, JHEP 06, 173 (2015), arXiv:1409.4792 [hep-ph] .
  21. J. Jaeckel and M. Spannowsky, Phys. Lett. B 753, 482 (2016), arXiv:1509.00476 [hep-ph] .
  22. S. Alekhin et al., Rept. Prog. Phys. 79, 124201 (2016), arXiv:1504.04855 [hep-ph] .
  23. K. Cheung and C. J. Ouseph,   (2023), arXiv:2303.16514 [hep-ph] .
  24. G. Aad et al. (ATLAS), JHEP 07, 141 (2023), arXiv:2303.15340 [hep-ex] .
  25. G. Aad et al. (ATLAS), Phys. Rev. Lett. 129, 061803 (2022b), arXiv:2201.13045 [hep-ex] .
  26.   (2023), arXiv:2301.03902 [hep-ex] .
  27. A. Hayrapetyan et al. (CMS),   (2023), arXiv:2305.18106 [hep-ex] .
  28. G. Aad et al. (ATLAS), Phys. Lett. B 800, 135069 (2020c), arXiv:1907.06131 [hep-ex] .
  29. K. Tsumura and L. Velasco-Sevilla, Phys. Rev. D 81, 036012 (2010), arXiv:0911.2149 [hep-ph] .
  30. G. W. Bennett et al. (Muon g-2), Phys. Rev. D 73, 072003 (2006), arXiv:hep-ex/0602035 .
  31. J. Grange et al. (Muon g-2),   (2015), arXiv:1501.06858 [physics.ins-det] .
  32. D. P. Aguillard et al. (Muon g-2), Phys. Rev. Lett. 131, 161802 (2023), arXiv:2308.06230 [hep-ex] .
  33. R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022b).
  34. A. M. Baldini et al. (MEG), Eur. Phys. J. C 76, 434 (2016), arXiv:1605.05081 [hep-ex] .
  35. B. Aubert et al. (BaBar), Phys. Rev. Lett. 104, 021802 (2010), arXiv:0908.2381 [hep-ex] .
  36. C. Bierlich et al.,  (2022), 10.21468/SciPostPhysCodeb.8, arXiv:2203.11601 [hep-ph] .
  37. M. Blanke and S. Iguro,   (2022), arXiv:2210.13508 [hep-ph] .
  38. M. Jacob and G. Wick, Annals of Physics 281, 774 (2000).
  39. H. H. Patel, Comput. Phys. Commun. 218, 66 (2017), arXiv:1612.00009 [hep-ph] .

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com