Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An orthogonalization-free implementation of the LOBPCG method in solving Kohn-Sham equation (2306.14864v2)

Published 26 Jun 2023 in math.NA and cs.NA

Abstract: In the classic implementation of the LOBPCG method, orthogonalization and the R-R (Rayleigh-Ritz) procedure cost nonignorable CPU time. Especially this consumption could be very expensive to deal with situations with large block sizes. In this paper, we propose an orthogonalization-free framework of implementing the LOBPCG method for SCF (self-consistent field) iterations in solving the Kohn-Sham equation. In this framework, orthogonalization is avoided in calculations, which can decrease the computational complexity. And the R-R procedure is implemented parallelly through OpenMP, which can further reduce computational time. During numerical experiments, an effective preconditioning strategy is designed, which can accelerate the LOBPCG method remarkably. Consequently, the efficiency of the LOBPCG method can be significantly improved. Based on this, the SCF iteration can solve the Kohn-Sham equation efficiently. A series of numerical experiments are inducted to demonstrate the effectiveness of our implementation, in which significant improvements in computational time can be observed.

Summary

We haven't generated a summary for this paper yet.