Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Positive-Unlabeled Metric Learning Framework for Document-Level Relation Extraction with Incomplete Labeling (2306.14806v2)

Published 26 Jun 2023 in cs.CL and cs.AI

Abstract: The goal of document-level relation extraction (RE) is to identify relations between entities that span multiple sentences. Recently, incomplete labeling in document-level RE has received increasing attention, and some studies have used methods such as positive-unlabeled learning to tackle this issue, but there is still a lot of room for improvement. Motivated by this, we propose a positive-augmentation and positive-mixup positive-unlabeled metric learning framework (P3M). Specifically, we formulate document-level RE as a metric learning problem. We aim to pull the distance closer between entity pair embedding and their corresponding relation embedding, while pushing it farther away from the none-class relation embedding. Additionally, we adapt the positive-unlabeled learning to this loss objective. In order to improve the generalizability of the model, we use dropout to augment positive samples and propose a positive-none-class mixup method. Extensive experiments show that P3M improves the F1 score by approximately 4-10 points in document-level RE with incomplete labeling, and achieves state-of-the-art results in fully labeled scenarios. Furthermore, P3M has also demonstrated robustness to prior estimation bias in incomplete labeled scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ye Wang (248 papers)
  2. Huazheng Pan (1 paper)
  3. Tao Zhang (481 papers)
  4. Wen Wu (103 papers)
  5. Wenxin Hu (10 papers)
Citations (4)