Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segmentation of Industrial Burner Flames: A Comparative Study from Traditional Image Processing to Machine and Deep Learning (2306.14789v1)

Published 26 Jun 2023 in cs.CV, cs.AI, and cs.LG

Abstract: In many industrial processes, such as power generation, chemical production, and waste management, accurately monitoring industrial burner flame characteristics is crucial for safe and efficient operation. A key step involves separating the flames from the background through binary segmentation. Decades of machine vision research have produced a wide range of possible solutions, from traditional image processing to traditional machine learning and modern deep learning methods. In this work, we present a comparative study of multiple segmentation approaches, namely Global Thresholding, Region Growing, Support Vector Machines, Random Forest, Multilayer Perceptron, U-Net, and DeepLabV3+, that are evaluated on a public benchmark dataset of industrial burner flames. We provide helpful insights and guidance for researchers and practitioners aiming to select an appropriate approach for the binary segmentation of industrial burner flames and beyond. For the highest accuracy, deep learning is the leading approach, while for fast and simple solutions, traditional image processing techniques remain a viable option.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (5)

Summary

We haven't generated a summary for this paper yet.