2000 character limit reached
Bosonization of Feigin-Odesskii Poisson varieties (2306.14719v1)
Published 26 Jun 2023 in math.AG, math.QA, and math.SG
Abstract: The derived moduli stack of complexes of vector bundles on a Gorenstein Calabi-Yau curve admits a 0-shifted Poisson structure. Feigin-Odesskii Poisson varieties are examples of such moduli spaces over complex elliptic curves. Using moduli stack of chains we construct an auxiliary Poisson varieties with a Poisson morphism from it to a Feigin-Odesskii variety. We call it the \emph{bosonization} of Feigin-Odesskii variety. As an application, we show that the Feigin-Odesskii Poisson brackets on projective spaces (associated with stable bundles of arbitrary rank on elliptic curves) admit no infinitesimal symmetries.