Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elucidating Interfacial Dynamics of Ti-Al Systems Using Molecular Dynamics Simulation and Markov State Modeling (2306.14568v2)

Published 26 Jun 2023 in cond-mat.mes-hall, cs.LG, physics.comp-ph, and physics.data-an

Abstract: Due to their remarkable mechanical and chemical properties, Ti-Al based materials are attracting considerable interest in numerous fields of engineering, such as automotive, aerospace, and defense. With their low density, high strength, and resistance to corrosion and oxidation, these intermetallic alloys and compound metal-metallic composites have found diverse applications. The present study delves into the interfacial dynamics of these Ti-Al systems, particularly focusing on the behavior of Ti and Al atoms in the presence of TiAl$_3$ grain boundaries under experimental heat treatment conditions. Using a combination of Molecular Dynamics and Markov State Model analyses, we scrutinize the kinetic processes involved in the formation of TiAl$_3$. The Molecular Dynamics simulation indicates that at the early stage of heat treatment, the predominating process is the diffusion of Al atoms towards the Ti surface through the TiAl$_3$ grain boundaries. The Markov State Modeling identifies three distinct dynamic states of Al atoms within the Ti/Al mixture that forms during the process, each exhibiting a unique spatial distribution. Using transition timescales as a qualitative measure of the rapidness of the dynamics, it is observed that the Al dynamics is significantly less rapid near the Ti surface compared to the Al surface. Put together, the results offer a comprehensive understanding of the interfacial dynamics and reveals a three-stage diffusion mechanism. The process initiates with the premelting of Al, proceeds with the prevalent diffusion of Al atoms towards the Ti surface, and eventually ceases as the Ti concentration within the mixture progressively increases. The insights gained from this study could contribute significantly to the control and optimization of manufacturing processes for these high-performing Ti-Al based materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. A. Emiralioğlu and R. Ünal, “Additive manufacturing of gamma titanium aluminide alloys: a review,” Journal of Materials Science, vol. 57, no. 7, pp. 4441–4466, 2022.
  2. J.-y. Zhang, Y.-h. Wang, L. Zheng, Q.-a. Chen, Y.-y. Chen, and H.-z. Li, “Formation mechanism and growth kinetics of tial3 phase in cold-rolled ti/al laminated composites during annealing,” Transactions of Nonferrous Metals Society of China, vol. 32, no. 2, pp. 524–539, 2022.
  3. Y. Ma, Q. Mei, C. Li, L. Wan, J. Li, F. Chen, X. Mei, and Z. Chen, “Microstructure and mechanical behavior of al–tial3 composites containing high content uniform dispersion of tial3 particles,” Materials Science and Engineering: A, vol. 786, p. 139435, 2020.
  4. J. Dilip, H. Miyanaji, A. Lassell, T. L. Starr, and B. Stucker, “A novel method to fabricate tial intermetallic alloy 3d parts using additive manufacturing,” Defence technology, vol. 13, no. 2, pp. 72–76, 2017.
  5. N. Thiyaneshwaran, K. Sivaprasad, and B. Ravisankar, “Nucleation and growth of tial3 intermetallic phase in diffusion bonded ti/al metal intermetallic laminate,” Scientific reports, vol. 8, no. 1, p. 16797, 2018.
  6. W. Wang, M. Dahl, and Y. Yin, “Hollow nanocrystals through the nanoscale kirkendall effect,” Chemistry of Materials, vol. 25, no. 8, pp. 1179–1189, 2013.
  7. A.-A. El Mel, R. Nakamura, and C. Bittencourt, “The kirkendall effect and nanoscience: hollow nanospheres and nanotubes,” Beilstein journal of nanotechnology, vol. 6, no. 1, pp. 1348–1361, 2015.
  8. W. Sun, F. You, F. Kong, X. Wang, and Y. Chen, “Fracture mechanism of a high tensile strength and fracture toughness ti6al4v–tial laminated composite,” Journal of Alloys and Compounds, vol. 820, p. 153088, 2020.
  9. M. Mirjalili, M. Soltanieh, K. Matsuura, and M. Ohno, “On the kinetics of tial3 intermetallic layer formation in the titanium and aluminum diffusion couple,” Intermetallics, vol. 32, pp. 297–302, 2013.
  10. L. Xu, Y. Cui, Y. Hao, and R. Yang, “Growth of intermetallic layer in multi-laminated ti/al diffusion couples,” Materials Science and Engineering: A, vol. 435, pp. 638–647, 2006.
  11. S. Kiselev and E. Zhirov, “Molecular-dynamics simulation of the synthesis of intermetallic ti–al,” Intermetallics, vol. 49, pp. 106–114, 2014.
  12. S. P. Kiselev, “Modeling the crystallization of a ti–al nanoparticle by the molecular dynamics method,” Doklady Physics, vol. 61, no. 2, pp. 47–49, 2016.
  13. E. V. Levchenko, A. V. Evteev, G. G. Löwisch, I. V. Belova, and G. E. Murch, “Molecular dynamics simulation of alloying in a ti-coated al nanoparticle,” Intermetallics, vol. 22, pp. 193–202, 2012.
  14. Q. Bizot, O. Politano, A. Nepapushev, S. Vadchenko, A. Rogachev, and F. Baras, “Reactivity of the ti–al system: Experimental study and molecular dynamics simulations,” Journal of Applied Physics, vol. 127, no. 14, p. 145304, 2020.
  15. G. Poletaev, “Self-diffusion in liquid and solid alloys of the ti–al system: Molecular dynamics simulation,” Journal of Experimental and Theoretical Physics, vol. 133, pp. 455–460, 2021.
  16. J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schütte, and F. Noé, “Markov models of molecular kinetics: Generation and validation,” The Journal of chemical physics, vol. 134, no. 17, p. 174105, 2011.
  17. A. F. Voter and J. D. Doll, “Dynamical corrections to transition state theory for multistate systems: Surface self-diffusion in the rare-event regime,” The Journal of chemical physics, vol. 82, no. 1, pp. 80–92, 1985.
  18. N. S. Hinrichs and V. S. Pande, “Calculation of the distribution of eigenvalues and eigenvectors in markovian state models for molecular dynamics,” The Journal of chemical physics, vol. 126, no. 24, p. 244101, 2007.
  19. V. S. Pande, K. Beauchamp, and G. R. Bowman, “Everything you wanted to know about markov state models but were afraid to ask,” Methods, vol. 52, no. 1, pp. 99–105, 2010.
  20. B. E. Husic and V. S. Pande, “Markov state models: From an art to a science,” Journal of the American Chemical Society, vol. 140, no. 7, pp. 2386–2396, 2018.
  21. H. Wu, F. Nüske, F. Paul, S. Klus, P. Koltai, and F. Noé, “Variational koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations,” The Journal of chemical physics, vol. 146, no. 15, p. 154104, 2017.
  22. H. Wu and F. Noé, “Variational approach for learning markov processes from time series data,” Journal of Nonlinear Science, vol. 30, no. 1, pp. 23–66, 2020.
  23. A. Mardt, L. Pasquali, H. Wu, and F. Noé, “Vampnets for deep learning of molecular kinetics,” Nature communications, vol. 9, no. 1, p. 5, 2018.
  24. T. Xie, A. France-Lanord, Y. Wang, Y. Shao-Horn, and J. C. Grossman, “Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials,” Nature communications, vol. 10, no. 1, pp. 1–9, 2019.
  25. R. R. Zope and Y. Mishin, “Interatomic potentials for atomistic simulations of the ti-al system,” Physical Review B, vol. 68, no. 2, p. 024102, 2003.
  26. H. Wu, D. Xu, H. Wang, and R. Yang, “Molecular dynamics simulation of tensile deformation and fracture of γ𝛾\gammaitalic_γ-tial with and without surface defects,” Journal of Materials Science & Technology, vol. 32, no. 10, pp. 1033–1042, 2016.
  27. F.-L. Tang, H.-M. Cai, H.-W. Bao, H.-T. Xue, W.-J. Lu, L. Zhu, and Z.-Y. Rui, “Molecular dynamics simulations of void growth in γ𝛾\gammaitalic_γ-tial single crystal,” Computational materials science, vol. 84, pp. 232–237, 2014.
  28. Y. Gao, Q. Xie, T. Gao, W. Yang, Q. Chen, Z. Tian, L. Li, Y. Liang, and B. Wang, “Design of functionally graded ti–al alloy with adjustable mechanical properties: a molecular dynamics insights,” Journal of Materials Research and Technology, 2023.
  29. Q.-X. Pei, M. Jhon, S. S. Quek, and Z. Wu, “A systematic study of interatomic potentials for mechanical behaviours of ti-al alloys,” Computational Materials Science, vol. 188, p. 110239, 2021.
  30. Y.-K. Kim, H.-K. Kim, W.-S. Jung, and B.-J. Lee, “Atomistic modeling of the ti–al binary system,” Computational materials science, vol. 119, pp. 1–8, 2016.
  31. Y.-B. Sun, Y.-Q. Zhao, D. Zhang, C.-Y. Liu, H.-Y. Diao, et al., “Multilayered ti-al intermetallic sheets fabricated by cold rolling and annealing of titanium and aluminum foils,” Transactions of Nonferrous Metals Society of China, vol. 21, no. 8, pp. 1722–1727, 2011.
  32. D. Lazurenko, I. Bataev, V. Mali, A. Bataev, I. N. Maliutina, V. Lozhkin, M. Esikov, and A. Jorge, “Explosively welded multilayer ti-al composites: Structure and transformation during heat treatment,” Materials & Design, vol. 102, pp. 122–130, 2016.
  33. Springer Science & Business Media, 2013.
  34. C. Tian and A. Moridi, “In situ reactive printing of aluminum matrix composite with ultra-high volume fraction reinforcement,” 3D Printing and Additive Manufacturing, 2022.
  35. J.-H. Prinz, B. Keller, and F. Noé, “Probing molecular kinetics with markov models: metastable states, transition pathways and spectroscopic observables,” Physical Chemistry Chemical Physics, vol. 13, no. 38, pp. 16912–16927, 2011.
Citations (2)

Summary

We haven't generated a summary for this paper yet.