Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rationality of Four-Valued Families of Weil Sums of Binomials (2306.14414v2)

Published 26 Jun 2023 in math.NT, cs.CR, cs.IT, math.CO, and math.IT

Abstract: We investigate the rationality of Weil sums of binomials of the form $W{K,s}u=\sum{x \in K} \psi(xs - u x)$, where $K$ is a finite field whose canonical additive character is $\psi$, and where $u$ is an element of $K{\times}$ and $s$ is a positive integer relatively prime to $|K\times|$, so that $x \mapsto xs$ is a permutation of $K$. The Weil spectrum for $K$ and $s$, which is the family of values $W{K,s}_u$ as $u$ runs through $K\times$, is of interest in arithmetic geometry and in several information-theoretic applications. The Weil spectrum always contains at least three distinct values if $s$ is nondegenerate (i.e., if $s$ is not a power of $p$ modulo $|K\times|$, where $p$ is the characteristic of $K$). It is already known that if the Weil spectrum contains precisely three distinct values, then they must all be rational integers. We show that if the Weil spectrum contains precisely four distinct values, then they must all be rational integers, with the sole exception of the case where $|K|=5$ and $s \equiv 3 \pmod{4}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Cyclotomy of Weil sums of binomials. J. Number Theory, 154:160–178, 2015.
  2. N. M. Akuliničev. Bounds for rational trigonometric sums of a special type. Dokl. Akad. Nauk SSSR, 161:743–745, 1965.
  3. L. Carlitz. A note on exponential sums. Math. Scand., 42(1):39–48, 1978.
  4. L. Carlitz. Explicit evaluation of certain exponential sums. Math. Scand., 44(1):5–16, 1979.
  5. Robert S. Coulter. Further evaluations of Weil sums. Acta Arith., 86(3):217–226, 1998.
  6. Stepanov’s method applied to binomial exponential sums. Q. J. Math., 54(3):243–255, 2003.
  7. Explicit bounds on monomial and binomial exponential sums. Q. J. Math., 62(2):323–349, 2011.
  8. Niho type cross-correlation functions via Dickson polynomials and Kloosterman sums. IEEE Trans. Inform. Theory, 52(2):613–627, 2006.
  9. H. Davenport and H. Heilbronn. On an exponential sum. Proc. London Math. Soc. (2), 41(6):449–453, 1936.
  10. Hans Dobbertin. One-to-one highly nonlinear power functions on GF⁢(2n)GFsuperscript2𝑛{\rm GF}(2^{n})roman_GF ( 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ). Appl. Algebra Engrg. Comm. Comput., 9(2):139–152, 1998.
  11. Tao Feng. On cyclic codes of length 22r−1superscript2superscript2𝑟12^{2^{r}}-12 start_POSTSUPERSCRIPT 2 start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT - 1 with two zeros whose dual codes have three weights. Des. Codes Cryptogr., 62(3):253–258, 2012.
  12. Tor Helleseth. Some results about the cross-correlation function between two maximal linear sequences. Discrete Math., 16(3):209–232, 1976.
  13. New pairs of m𝑚mitalic_m-sequences with 4-level cross-correlation. Finite Fields Appl., 11(4):674–683, 2005.
  14. A. A. Karatsuba. Estimates of complete trigonometric sums. Mat. Zametki, 1(2):199–208, 1967.
  15. Daniel J. Katz. Weil sums of binomials, three-level cross-correlation, and a conjecture of Helleseth. J. Combin. Theory Ser. A, 119(8):1644–1659, 2012.
  16. Daniel J. Katz. Divisibility of Weil sums of binomials. Proc. Amer. Math. Soc., 143(11):4623–4632, 2015.
  17. Daniel J. Katz. Weil sums of binomials: properties, applications and open problems. In Kai-Uwe Schmidt and Arne Winterhof, editors, Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, volume 23 of Radon Ser. Comput. Appl. Math., pages 109–134. De Gruyter, Berlin, Boston, 2019.
  18. Sommes de Kloosterman et courbes elliptiques universelles en caractéristiques 2222 et 3333. C. R. Acad. Sci. Paris Sér. I Math., 309(11):723–726, 1989.
  19. New open problems related to old conjectures by Helleseth. Cryptogr. Commun., 8(2):175–189, 2016.
  20. H. D. Kloosterman. On the representation of numbers in the form a⁢x2+b⁢y2+c⁢z2+d⁢t2𝑎superscript𝑥2𝑏superscript𝑦2𝑐superscript𝑧2𝑑superscript𝑡2ax^{2}+by^{2}+cz^{2}+dt^{2}italic_a italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_c italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Acta Math., 49(3-4):407–464, 1927.
  21. Serge Lang. Cyclotomic fields I and II, volume 121 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990.
  22. Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 2002.
  23. Finite fields, volume 20 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1997.
  24. Sommes de Kloosterman, courbes elliptiques et codes cycliques en caractéristique 2222. C. R. Acad. Sci. Paris Sér. I Math., 305(20):881–883, 1987.
  25. Yoji Niho. Multi-valued cross-correlation function between two maximal linear recursive sequences. PhD thesis, University of Southern California, Los Angeles, 1972.
  26. Binomial exponential sums. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 21:931–941, 2020.
  27. Herbert Mitchell Trachtenberg. On the cross-correlation functions of maximal linear sequences. PhD thesis, University of Southern California, Los Angeles, 1970.
  28. A note on cross-correlation distribution between a ternary m𝑚mitalic_m-sequence and its decimated sequence. In Sequences and their applications—SETA 2014, volume 8865 of Lecture Notes in Comput. Sci., pages 249–259. Springer, Cham, 2014.
  29. Some new results on the cross correlation of m𝑚mitalic_m-sequences. IEEE Trans. Inform. Theory, 60(5):3062–3068, 2014.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com