Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Spectral Perspective towards Understanding and Improving Adversarial Robustness (2306.14262v1)

Published 25 Jun 2023 in cs.CV

Abstract: Deep neural networks (DNNs) are incredibly vulnerable to crafted, imperceptible adversarial perturbations. While adversarial training (AT) has proven to be an effective defense approach, the AT mechanism for robustness improvement is not fully understood. This work investigates AT from a spectral perspective, adding new insights to the design of effective defenses. In particular, we show that AT induces the deep model to focus more on the low-frequency region, which retains the shape-biased representations, to gain robustness. Further, we find that the spectrum of a white-box attack is primarily distributed in regions the model focuses on, and the perturbation attacks the spectral bands where the model is vulnerable. Based on this observation, to train a model tolerant to frequency-varying perturbation, we propose a spectral alignment regularization (SAR) such that the spectral output inferred by an attacked adversarial input stays as close as possible to its natural input counterpart. Experiments demonstrate that SAR and its weight averaging (WA) extension could significantly improve the robust accuracy by 1.14% ~ 3.87% relative to the standard AT, across multiple datasets (CIFAR-10, CIFAR-100 and Tiny ImageNet), and various attacks (PGD, C&W and Autoattack), without any extra data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  2. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  3. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
  4. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.
  5. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.
  6. J. Zhang, X. Xu, B. Han, G. Niu, L. Cui, M. Sugiyama, and M. Kankanhalli, “Attacks which do not kill training make adversarial learning stronger,” in International conference on machine learning.   PMLR, 2020, pp. 11 278–11 287.
  7. N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, S. Li, L. Chen, M. E. Kounavis, and D. H. Chau, “Shield: Fast, practical defense and vaccination for deep learning using jpeg compression,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 196–204.
  8. C. Mao, Z. Zhong, J. Yang, C. Vondrick, and B. Ray, “Metric learning for adversarial robustness,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  9. H. Zheng, Z. Zhang, J. Gu, H. Lee, and A. Prakash, “Efficient adversarial training with transferable adversarial examples,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1181–1190.
  10. A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples,” in International conference on machine learning.   PMLR, 2018, pp. 274–283.
  11. E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting adversarial training,” arXiv preprint arXiv:2001.03994, 2020.
  12. G. Sriramanan, S. Addepalli, A. Baburaj et al., “Guided adversarial attack for evaluating and enhancing adversarial defenses,” Advances in Neural Information Processing Systems, vol. 33, pp. 20 297–20 308, 2020.
  13. M. Andriushchenko and N. Flammarion, “Understanding and improving fast adversarial training,” Advances in Neural Information Processing Systems, vol. 33, pp. 16 048–16 059, 2020.
  14. G. Sriramanan, S. Addepalli, A. Baburaj et al., “Towards efficient and effective adversarial training,” Advances in Neural Information Processing Systems, vol. 34, pp. 11 821–11 833, 2021.
  15. X. Jia, Y. Zhang, X. Wei, B. Wu, K. Ma, J. Wang, and X. Cao, “Prior-guided adversarial initialization for fast adversarial training,” in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part IV.   Springer, 2022, pp. 567–584.
  16. L. Rice, E. Wong, and Z. Kolter, “Overfitting in adversarially robust deep learning,” in International Conference on Machine Learning.   PMLR, 2020, pp. 8093–8104.
  17. H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan, “Theoretically principled trade-off between robustness and accuracy,” in International conference on machine learning.   PMLR, 2019, pp. 7472–7482.
  18. D. Wu, S.-T. Xia, and Y. Wang, “Adversarial weight perturbation helps robust generalization,” Advances in Neural Information Processing Systems, vol. 33, pp. 2958–2969, 2020.
  19. X. Jia, Y. Zhang, B. Wu, K. Ma, J. Wang, and X. Cao, “Las-at: Adversarial training with learnable attack strategy,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 13 398–13 408.
  20. H. Wang, X. Wu, Z. Huang, and E. P. Xing, “High-frequency component helps explain the generalization of convolutional neural networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8684–8694.
  21. W. Xie, D. Song, C. Xu, C. Xu, H. Zhang, and Y. Wang, “Learning frequency-aware dynamic network for efficient super-resolution,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 4308–4317.
  22. D. Yin, R. Gontijo Lopes, J. Shlens, E. D. Cubuk, and J. Gilmer, “A fourier perspective on model robustness in computer vision,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  23. A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry, “Adversarial examples are not bugs, they are features,” Advances in neural information processing systems, vol. 32, 2019.
  24. Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu, “Improving adversarial robustness requires revisiting misclassified examples,” in International Conference on Learning Representations, 2019.
  25. Y. Carmon, A. Raghunathan, L. Schmidt, J. C. Duchi, and P. S. Liang, “Unlabeled data improves adversarial robustness,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  26. T. Zhang and Z. Zhu, “Interpreting adversarially trained convolutional neural networks,” in International Conference on Machine Learning.   PMLR, 2019, pp. 7502–7511.
  27. Z. Wang, Y. Yang, A. Shrivastava, V. Rawal, and Z. Ding, “Towards frequency-based explanation for robust cnn,” arXiv preprint arXiv:2005.03141, 2020.
  28. S. R. Maiya, M. Ehrlich, V. Agarwal, S.-N. Lim, T. Goldstein, and A. Shrivastava, “A frequency perspective of adversarial robustness,” arXiv preprint arXiv:2111.00861, 2021.
  29. R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel, “Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness,” arXiv preprint arXiv:1811.12231, 2018.
  30. R. Bernhard, P.-A. Moëllic, M. Mermillod, Y. Bourrier, R. Cohendet, M. Solinas, and M. Reyboz, “Impact of spatial frequency based constraints on adversarial robustness,” in 2021 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2021, pp. 1–8.
  31. H. Kannan, A. Kurakin, and I. Goodfellow, “Adversarial logit pairing,” arXiv preprint arXiv:1803.06373, 2018.
  32. J. Tack, S. Yu, J. Jeong, M. Kim, S. J. Hwang, and J. Shin, “Consistency regularization for adversarial robustness,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 8, 2022, pp. 8414–8422.
  33. P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson, “Averaging weights leads to wider optima and better generalization,” arXiv preprint arXiv:1803.05407, 2018.
  34. S. Gowal, C. Qin, J. Uesato, T. Mann, and P. Kohli, “Uncovering the limits of adversarial training against norm-bounded adversarial examples,” arXiv preprint arXiv:2010.03593, 2020.
  35. T. Chen, Z. Zhang, S. Liu, S. Chang, and Z. Wang, “Robust overfitting may be mitigated by properly learned smoothening,” in International Conference on Learning Representations, 2020.
  36. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.
  37. Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS 231N, vol. 7, no. 7, p. 3, 2015.
  38. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 ieee symposium on security and privacy (sp).   IEEE, 2017, pp. 39–57.
  39. F. Croce and M. Hein, “Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks,” in International conference on machine learning.   PMLR, 2020, pp. 2206–2216.
  40. S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint arXiv:1605.07146, 2016.
  41. D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “Robustness may be at odds with accuracy,” arXiv preprint arXiv:1805.12152, 2018.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Binxiao Huang (13 papers)
  2. Rui Lin (36 papers)
  3. Chaofan Tao (27 papers)
  4. Ngai Wong (82 papers)