Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Safe Genetic Algorithm Approach for Energy Efficient Federated Learning in Wireless Communication Networks (2306.14237v2)

Published 25 Jun 2023 in cs.NE, cs.NI, and eess.SP

Abstract: Federated Learning (FL) has emerged as a decentralized technique, where contrary to traditional centralized approaches, devices perform a model training in a collaborative manner, while preserving data privacy. Despite the existing efforts made in FL, its environmental impact is still under investigation, since several critical challenges regarding its applicability to wireless networks have been identified. Towards mitigating the carbon footprint of FL, the current work proposes a Genetic Algorithm (GA) approach, targeting the minimization of both the overall energy consumption of an FL process and any unnecessary resource utilization, by orchestrating the computational and communication resources of the involved devices, while guaranteeing a certain FL model performance target. A penalty function is introduced in the offline phase of the GA that penalizes the strategies that violate the constraints of the environment, ensuring a safe GA process. Evaluation results show the effectiveness of the proposed scheme compared to two state-of-the-art baseline solutions, achieving a decrease of up to 83% in the total energy consumption.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. S. Lange, J. Pohl, and T. Santarius, “Digitalization and energy consumption. does ict reduce energy demand?” Ecological Economics, vol. 176, p. 106760, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921800919320622
  2. A. S. G. Andrae and T. Edler, “On global electricity usage of communication technology: Trends to 2030,” Challenges, vol. 6, no. 1, pp. 117–157, 2015. [Online]. Available: https://www.mdpi.com/2078-1547/6/1/117
  3. Mobile net zero: State of the industry on climate action 2022 report. [Online]. Available: https://www.gsma.com/betterfuture/wp-content/uploads/2022/05/Moble-Net-Zero-State-of-the-Industry-on-Climate-Action-2022.pdf
  4. A new industrial strategy for a globally competitive, green and digital europe. [Online]. Available: https://ec.europa.eu/commission/presscorner/detail/en/fs_20_425
  5. A. Kaloxylos, A. Gavras, D. Camps Mur, M. Ghoraishi, and H. Hrasnica, “Ai and ml – enablers for beyond 5g networks,” Dec. 2020. [Online]. Available: https://doi.org/10.5281/zenodo.4299895
  6. S. Savazzi, V. Rampa, S. Kianoush, and M. Bennis, “An energy and carbon footprint analysis of distributed and federated learning,” IEEE Transactions on Green Communications and Networking, pp. 1–1, 2022.
  7. 3GPP, “Technical Specification Group Services and System Aspects; Study of Enablers for Network Automation for the 5G System; Phase 3 (Release 18),” Technical Report 3GPP TR 23.700-80, December 2022.
  8. ETSI, “5G; Architecture enhancements for 5G System (5GS) to support network data analytics services,” Technical Specification ETSI TS 123 288 V17.4.0, May 2022.
  9. S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wireless communications: Motivation, opportunities, and challenges,” IEEE Communications Magazine, vol. 58, no. 6, pp. 46–51, 2020.
  10. Test case definition and test site description part 1. [Online]. Available: https://5gcroco.eu/images/templates/rsvario/images/5GCroCo_D2_1.pdf
  11. J. Ren, J. Sun, H. Tian, W. Ni, G. Nie, and Y. Wang, “Joint resource allocation for efficient federated learning in internet of things supported by edge computing,” in 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 2021, pp. 1–6.
  12. X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation and communication cooperation for energy-efficient mobile edge computing,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4188–4200, 2019.
  13. Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient radio resource allocation for federated edge learning,” in 2020 IEEE International Conference on Communications Workshops (ICC Workshops), 2020, pp. 1–6.
  14. Q. Wang, Y. Xiao, H. Zhu, Z. Sun, Y. Li, and X. Ge, “Towards energy-efficient federated edge intelligence for iot networks,” in 2021 IEEE 41st International Conference on Distributed Computing Systems Workshops (ICDCSW), 2021, pp. 55–62.
  15. Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy efficient federated learning over wireless communication networks,” Trans. Wireless. Comm., vol. 20, no. 3, p. 1935–1949, mar 2021. [Online]. Available: https://doi.org/10.1109/TWC.2020.3037554
  16. Y. Zhan, P. Li, L. Wu, and S. Guo, “L4l: Experience-driven computational resource control in federated learning,” IEEE Transactions on Computers, vol. 71, no. 4, pp. 971–983, 2022.
  17. X. Mo and J. Xu, “Energy-efficient federated edge learning with joint communication and computation design,” Journal of Communications and Information Networks, vol. 6, no. 2, pp. 110–124, 2021.
  18. X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on non-iid data,” in International Conference on Learning Representations, 2020. [Online]. Available: https://openreview.net/forum?id=HJxNAnVtDS
  19. J. García and F. Fernández, “A comprehensive survey on safe reinforcement learning,” J. Mach. Learn. Res., vol. 16, no. 1, p. 1437–1480, jan 2015.
  20. B. Thomas, “Evolutionary algorithms in theory and practice,” p. 120, 1996.
  21. J. Macedo, E. Costa, and L. Marques, “Genetic programming algorithms for dynamic environments”,” in ”Applications of Evolutionary Computation, G. Squillero and P. Burelli, Eds.   Cham: Springer International Publishing, 2016, pp. 280–295.
  22. H. Zhou, K. Jiang, X. Liu, X. Li, and V. C. M. Leung, “Deep reinforcement learning for energy-efficient computation offloading in mobile-edge computing,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1517–1530, 2022.
  23. Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, vol. 2, 2010.
  24. Flops library. [Online]. Available: github.com/tokusumi/keras-flops
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
Citations (2)

Summary

We haven't generated a summary for this paper yet.