Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Rank Prune-And-Factorize for Language Model Compression (2306.14152v1)

Published 25 Jun 2023 in cs.CL

Abstract: The components underpinning PLMs -- large weight matrices -- were shown to bear considerable redundancy. Matrix factorization, a well-established technique from matrix theory, has been utilized to reduce the number of parameters in PLM. However, it fails to retain satisfactory performance under moderate to high compression rate. In this paper, we identify the \textit{full-rankness} of fine-tuned PLM as the fundamental bottleneck for the failure of matrix factorization and explore the use of network pruning to extract low-rank sparsity pattern desirable to matrix factorization. We find such low-rank sparsity pattern exclusively exists in models generated by first-order pruning, which motivates us to unite the two approaches and achieve more effective model compression. We further propose two techniques: sparsity-aware SVD and mixed-rank fine-tuning, which improve the initialization and training of the compression procedure, respectively. Experiments on GLUE and question-answering tasks show that the proposed method has superior compression-performance trade-off compared to existing approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Siyu Ren (24 papers)
  2. Kenny Q. Zhu (50 papers)
Citations (6)