Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models (2306.14066v3)

Published 24 Jun 2023 in cs.LG and physics.ao-ph

Abstract: Uncertainty quantification is crucial to decision-making. A prominent example is probabilistic forecasting in numerical weather prediction. The dominant approach to representing uncertainty in weather forecasting is to generate an ensemble of forecasts. This is done by running many physics-based simulations under different conditions, which is a computationally costly process. We propose to amortize the computational cost by emulating these forecasts with deep generative diffusion models learned from historical data. The learned models are highly scalable with respect to high-performance computing accelerators and can sample hundreds to tens of thousands of realistic weather forecasts at low cost. When designed to emulate operational ensemble forecasts, the generated ones are similar to physics-based ensembles in important statistical properties and predictive skill. When designed to correct biases present in the operational forecasting system, the generated ensembles show improved probabilistic forecast metrics. They are more reliable and forecast probabilities of extreme weather events more accurately. While this work demonstrates the utility of the methodology by focusing on weather forecasting, the generative artificial intelligence methodology can be extended for uncertainty quantification in climate modeling, where we believe the generation of very large ensembles of climate projections will play an increasingly important role in climate risk assessment.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. Jeffrey L Anderson. A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Clim., 9:1518–1530, 1996. URL http://www.jstor.org/stable/26201352.
  2. The quiet revolution of numerical weather prediction. Nature, 525:47–55, 2015. doi: 10.1038/nature14956. URL https://doi.org/10.1038/nature14956.
  3. Riccardo Benedetti. Scoring rules for forecast verification. Mon. Weather Rev., 138(1):203–211, January 2010.
  4. Advancing research on compound weather and climate events via large ensemble model simulations. Nat. Commun., 14:2145, 2023. doi: 10.1038/s41467-023-37847-5. URL https://doi.org/10.1038/s41467-023-37847-5.
  5. Computing the ensemble spread from deterministic weather predictions using conditional generative adversarial networks. Geophys. Res. Lett., 50:e2022GL101452, 1 2023. URL https://doi.org/10.1029/2022GL101452.
  6. Glenn W Brier. Verification of forecasts expressed in terms of probability. Mon. Weather Rev., 78:1–3, 1950. doi: https://doi.org/10.1175/1520-0493(1950)078¡0001:VOFEIT¿2.0.CO;2. URL https://journals.ametsoc.org/view/journals/mwre/78/1/1520-0493_1950_078_0001_vofeit_2_0_co_2.xml.
  7. G Candille and O Talagrand. Evaluation of probabilistic prediction systems for a scalar variable. Q. J. R. Meteorol. Soc., 131(609):2131–2150, July 2005.
  8. Spatial ensemble post-processing with standardized anomalies. Q. J. R. Meteorol. Soc., 143:909–916, 1 2017. doi: https://doi.org/10.1002/qj.2975. URL https://doi.org/10.1002/qj.2975.
  9. Insights from earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 10:277–286, 2020. ISSN 1758-6798. doi: 10.1038/s41558-020-0731-2. URL https://doi.org/10.1038/s41558-020-0731-2.
  10. Diffusion models beat GANs on image synthesis. In Advances in Neural Information Processing Systems, volume 34, pages 8780–8794, 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf.
  11. An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.
  12. ECMWF. IFS Documentation CY47R3 - Part V Ensemble prediction system. Number 5. ECMWF, 09/2021 2021. doi: 10.21957/zw5j5zdz5. URL https://www.ecmwf.int/node/20199.
  13. Tobias Sebastian Finn. Self-Attentive ensemble transformer: Representing ensemble interactions in neural networks for earth system models. June 2021.
  14. Storylines for unprecedented heatwaves based on ensemble boosting. Nature Communications, 14:4643, 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-40112-4. URL https://doi.org/10.1038/s41467-023-40112-4.
  15. The prediction of extratropical storm tracks by the ECMWF and NCEP ensemble prediction systems. Mon. Weather Rev., 135(7):2545–2567, July 2007.
  16. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc., 102(477):359–378, March 2007.
  17. Deep learning for post-processing ensemble weather forecasts. Philos. Trans. R. Soc. A, 379(2194):20200092, April 2021.
  18. GEFSv12 reforecast dataset for supporting subseasonal and hydrometeorological applications. Mon. Weather Rev., 150(3):647–665, March 2022.
  19. Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. part I: Two-meter temperatures. Mon. Weather Rev., 136:2608–2619, 2008. doi: https://doi.org/10.1175/2007MWR2410.1. URL https://journals.ametsoc.org/view/journals/mwre/136/7/2007mwr2410.1.xml.
  20. A generative deep learning approach to stochastic downscaling of precipitation forecasts. J. Adv. Model. Earth Syst., 14(10):e2022MS003120, April 2022.
  21. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc., 146(730):1999–2049, 2020.
  22. Axial attention in multidimensional transformers, 2019. https://arxiv.org/abs/1912.12180.
  23. Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.
  24. Imagen video: High definition video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.
  25. Image-to-image translation with conditional adversarial networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5967–5976, 2017. doi: 10.1109/CVPR.2017.632. URL http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.632.
  26. Elucidating the design space of diffusion-based generative models. In Proc. NeurIPS, 2022.
  27. Martin Leutbecher. Ensemble size: How suboptimal is less than infinity? Q. J. R. Meteorol. Soc., 145:107–128, 9 2019. doi: https://doi.org/10.1002/qj.3387. URL https://doi.org/10.1002/qj.3387. https://doi.org/10.1002/qj.3387.
  28. Forecasts of hurricanes using Large-Ensemble outputs. Weather Forecast., 35(5):1713–1731, October 2020.
  29. Global extreme heat forecasting using neural weather models. Artif. Intell. Earth Syst., 2:e220035, 2023. doi: https://doi.org/10.1175/AIES-D-22-0035.1.
  30. E N Lorenz. Atmospheric predictability experiments with a large numerical model. Tellus A, 34(6):505–513, 1982.
  31. An effective configuration of ensemble size and horizontal resolution for the NCEP GEFS. Adv. Atmos. Sci., 29:782–794, 2012. doi: 10.1007/s00376-012-1249-y. URL https://doi.org/10.1007/s00376-012-1249-y.
  32. Tim Palmer. The economic value of ensemble forecasts as a tool for risk assessment: From days to decades. Q. J. R. Meteorol. Soc., 128:747–774, 4 2002. doi: https://doi.org/10.1256/0035900021643593. URL https://doi.org/10.1256/0035900021643593.
  33. Tim Palmer. The primacy of doubt: Evolution of numerical weather prediction from determinism to probability. J. Adv. Model. Earth Syst., 9:730–734, 6 2017. doi: https://doi.org/10.1002/2017MS000999. URL https://doi.org/10.1002/2017MS000999.
  34. Tim Palmer. The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years. Q. J. R. Meteorol. Soc., 145:12–24, 9 2019. doi: https://doi.org/10.1002/qj.3383. URL https://doi.org/10.1002/qj.3383.
  35. A review: Anomaly-based versus full-field-based weather analysis and forecasting. Bull. Am. Meteorol. Soc., 102:E849–E870, 2021. doi: https://doi.org/10.1175/BAMS-D-19-0297.1. URL https://journals.ametsoc.org/view/journals/bams/102/4/BAMS-D-19-0297.1.xml.
  36. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022. URL https://github.com/CompVis/latent-diffusionhttps://arxiv.org/abs/2112.10752.
  37. The “cubed sphere”: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys., 124:93–114, 1996. doi: https://doi.org/10.1006/jcph.1996.0047. URL https://www.sciencedirect.com/science/article/pii/S0021999196900479.
  38. Evaluation of machine learning techniques for forecast uncertainty quantification. Q. J. R. Meteorol. Soc., 148(749):3470–3490, October 2022.
  39. Predicting weather forecast uncertainty with machine learning. Q. J. R. Meteorol. Soc., 144:2830–2841, 10 2018a. doi: https://doi.org/10.1002/qj.3410. URL https://doi.org/10.1002/qj.3410. https://doi.org/10.1002/qj.3410.
  40. Predicting weather forecast uncertainty with machine learning. Q. J. R. Meteorol. Soc., 144(717):2830–2841, 2018b.
  41. Robust worst-case scenarios from ensemble forecasts. Weather Forecast., 36:1357–1373, 2021. doi: https://doi.org/10.1175/WAF-D-20-0219.1. URL https://journals.ametsoc.org/view/journals/wefo/36/4/WAF-D-20-0219.1.xml.
  42. Uncertainty in weather and climate prediction. Philos. Trans. R. Soc. A, 369:4751–4767, 12 2011. doi: 10.1098/rsta.2011.0161. URL https://doi.org/10.1098/rsta.2011.0161. doi: 10.1098/rsta.2011.0161.
  43. Score-based generative modeling through stochastic differential equations. In International Conference on Learning Representations, 2020.
  44. June 2017: The earliest european summer mega-heatwave of reanalysis period. Geophys. Res. Lett., 45:1955–1962, 2 2018. doi: https://doi.org/10.1002/2018GL077253. URL https://doi.org/10.1002/2018GL077253.
  45. Evaluation of probabilistic prediction systems. In Workshop on Predictability, 20-22 October 1997, pages 1–26, Shinfield Park, Reading, 1997. ECMWF.
  46. Fourier features let networks learn high frequency functions in low dimensional domains. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 7537–7547. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf.
  47. Daniel S Wilks. Statistical Methods in the Atmospheric Sciences. Elsevier, 4th edition, 2019. doi: https://doi.org/10.1016/B978-0-12-815823-4.00009-2.
  48. Alexandra Witze. Extreme heatwaves: Surprising lessons from the record warmth. Nature, 608:464–465, 2022.
  49. Generating wind power scenarios for probabilistic ramp event prediction using multivariate statistical post-processing. Wind Energy Sci., 3(1):371–393, 2018. doi: 10.5194/wes-3-371-2018. URL https://wes.copernicus.org/articles/3/371/2018/.
  50. The development of the NCEP global ensemble forecast system version 12. Weather Forecast., 37(6):1069–1084, June 2022.
  51. The economic value of ensemble-based weather forecasts. Bull. Am. Meteorol. Soc., 83:73–84, 2002. doi: https://doi.org/10.1175/1520-0477(2002)083¡0073:TEVOEB¿2.3.CO;2. URL https://journals.ametsoc.org/view/journals/bams/83/1/1520-0477_2002_083_0073_tevoeb_2_3_co_2.xml.
Citations (17)

Summary

We haven't generated a summary for this paper yet.