Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stable Yaw Estimation of Boats from the Viewpoint of UAVs and USVs (2306.14056v1)

Published 24 Jun 2023 in cs.CV and cs.RO

Abstract: Yaw estimation of boats from the viewpoint of unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) or boats is a crucial task in various applications such as 3D scene rendering, trajectory prediction, and navigation. However, the lack of literature on yaw estimation of objects from the viewpoint of UAVs has motivated us to address this domain. In this paper, we propose a method based on HyperPosePDF for predicting the orientation of boats in the 6D space. For that, we use existing datasets, such as PASCAL3D+ and our own datasets, SeaDronesSee-3D and BOArienT, which we annotated manually. We extend HyperPosePDF to work in video-based scenarios, such that it yields robust orientation predictions across time. Naively applying HyperPosePDF on video data yields single-point predictions, resulting in far-off predictions and often incorrect symmetric orientations due to unseen or visually different data. To alleviate this issue, we propose aggregating the probability distributions of pose predictions, resulting in significantly improved performance, as shown in our experimental evaluation. Our proposed method could significantly benefit downstream tasks in marine robotics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and A. Mouzakitis, “A survey on 3d object detection methods for autonomous driving applications,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3782–3795, 2019.
  2. T. Höfer, B. Kiefer, M. Messmer, and A. Zell, “Hyperposepdf - hypernetworks predicting the probability distribution on so(3),” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), January 2023, pp. 2369–2379.
  3. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment anything,” arXiv:2304.02643, 2023.
  4. T. Höfer, F. Shamsafar, N. Benbarka, and A. Zell, “Object detection and autoencoder-based 6d pose estimation for highly cluttered bin picking,” in 2021 IEEE International Conference on Image Processing (ICIP).   IEEE, 2021, pp. 704–708.
  5. Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic, “Cosypose: Consistent multi-view multi-object 6d pose estimation,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16.   Springer, 2020, pp. 574–591.
  6. M. Sundermeyer, Z.-C. Marton, M. Durner, and R. Triebel, “Augmented autoencoders: Implicit 3d orientation learning for 6d object detection,” International Journal of Computer Vision, vol. 128, pp. 714–729, 2020.
  7. K. Murphy, C. Esteves, V. Jampani, S. Ramalingam, and A. Makadia, “Implicit-pdf: Non-parametric representation of probability distributions on the rotation manifold,” arXiv arXiv:2106.05965, 2021.
  8. L. A. Varga, B. Kiefer, M. Messmer, and A. Zell, “Seadronessee: A maritime benchmark for detecting humans in open water,” arXiv preprint arXiv:2105.01922, 2021.
  9. B. Kiefer and A. Zell, “Fast region of interest proposals on maritime UAVs,” arXiv preprint arXiv:2301.11650, 2023.
  10. B. Bovcon, J. Muhovič, D. Vranac, D. Mozetič, J. Perš, and M. Kristan, “MODS–A USV-Oriented Object Detection and Obstacle Segmentation Benchmark,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–16, 2021.
  11. B. Kiefer, M. Kristan, J. Perš, L. Žust, F. Poiesi, F. Andrade, A. Bernardino, M. Dawkins, J. Raitoharju, Y. Quan, et al., “1st workshop on maritime computer vision (macvi) 2023: Challenge results,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 265–302.
  12. B. Sullivan, C. Ware, and M. Plumlee, “Predictive displays for survey vessels,” in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, no. 22.   Sage Publications Sage CA: Los Angeles, CA, 2006, pp. 2424–2428.
  13. A. W. Browning, “A mathematical model to simulate small boat behaviour,” Simulation, vol. 56, no. 5, pp. 329–336, 1991.
  14. D. Du, Y. Qi, H. Yu, Y. Yang, K. Duan, G. Li, W. Zhang, Q. Huang, and Q. Tian, “The unmanned aerial vehicle benchmark: Object detection and tracking,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 370–386.
  15. P. Ruiz-Ponce, D. Ortiz-Perez, J. Garcia-Rodriguez, and B. Kiefer, “Poseidon: A data augmentation tool for small object detection datasets in maritime environments,” Sensors, vol. 23, no. 7, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/7/3691
  16. B. Kiefer, D. Ott, and A. Zell, “Leveraging synthetic data in object detection on unmanned aerial vehicles,” arXiv preprint arXiv:2112.12252, 2021.
  17. M. Messmer, B. Kiefer, and A. Zell, “Gaining scale invariance in uav bird’s eye view object detection by adaptive resizing,” arXiv preprint arXiv:2101.12694, 2021.
  18. B. Kiefer, D. Ott, and A. Zell, “Leveraging synthetic data in object detection on unmanned aerial vehicles,” in 2022 26th International Conference on Pattern Recognition (ICPR).   IEEE, 2022, pp. 3564–3571.
  19. Jmvolc. Rotations around axes. [Online]. Available: https://en.wikipedia.org/wiki/Ship˙motions#/media/File:Rotations.png
  20. B. Kiefer, Y. Quan, and A. Zell, “Memory maps for video object detection and tracking on uavs,” arXiv preprint arXiv:2303.03508, 2023.
  21. Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond pascal: A benchmark for 3d object detection in the wild,” in IEEE winter conference on applications of computer vision.   IEEE, 2014, pp. 75–82.
  22. U. darkpgmr, “DarkLabel Annotation Tool, Github,” https://github.com/darkpgmr/DarkLabel, accessed: 2022-07-05.
Citations (2)

Summary

We haven't generated a summary for this paper yet.