Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ergodic properties of Brownian motion under stochastic resetting (2306.13621v1)

Published 23 Jun 2023 in cond-mat.stat-mech

Abstract: We study ergodic properties of one-dimensional Brownian motion with resetting. Using generic classes of statistics of times between resets, we find respectively for thin/fat tailed distributions, the normalized/non-normalised invariant density of this process. The former case corresponds to known results in the resetting literature and the latter to infinite ergodic theory. Two types of ergodic transitions are found in this system. The first is when the mean waiting time between resets diverges, when standard ergodic theory switches to infinite ergodic theory. The second is when the mean of the square root of time between resets diverges and the properties of the invariant density are drastically modified. We then find a fractional integral equation describing the density of particles. This finite time tool is particularly useful close to the ergodic transition where convergence to asymptotic limits is logarithmically slow. Our study implies rich ergodic behaviors for this non-equilibrium process which should hold far beyond the case of Brownian motion analyzed here.

Summary

We haven't generated a summary for this paper yet.