Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CIDGIKc: Distance-Geometric Inverse Kinematics for Continuum Robots (2306.13617v1)

Published 23 Jun 2023 in cs.RO

Abstract: The small size, high dexterity, and intrinsic compliance of continuum robots (CRs) make them well suited for constrained environments. Solving the inverse kinematics (IK), that is finding robot joint configurations that satisfy desired position or pose queries, is a fundamental challenge in motion planning, control, and calibration for any robot structure. For CRs, the need to avoid obstacles in tightly confined workspaces greatly complicates the search for feasible IK solutions. Without an accurate initialization or multiple re-starts, existing algorithms often fail to find a solution. We present CIDGIKc (Convex Iteration for Distance-Geometric Inverse Kinematics for Continuum Robots), an algorithm that solves these nonconvex feasibility problems with a sequence of semidefinite programs whose objectives are designed to encourage low-rank minimizers. CIDGIKc is enabled by a novel distance-geometric parameterization of constant curvature segment geometry for CRs with extensible segments. The resulting IK formulation involves only quadratic expressions and can efficiently incorporate a large number of collision avoidance constraints. Our experimental results demonstrate >98% solve success rates within complex, highly cluttered environments which existing algorithms cannot account for.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum robots for medical applications: A survey,” IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1261–1280, 2015.
  2. F. Blanchini, G. Fenu, G. Giordano, and F. A. Pellegrino, “A Convex Programming Approach to the Inverse Kinematics Problem for Manipulators under Constraints,” European Journal of Control, vol. 33, pp. 11–23, 2017.
  3. T. Le Naour, N. Courty, and S. Gibet, “Kinematics in the metric space,” Computers & Graphics, vol. 84, pp. 13–23, 2019.
  4. F. Marić, M. Giamou, S. Khoubyarian, I. Petrović, and J. Kelly, “Inverse Kinematics for Serial Kinematic Chains via Sum of Squares Optimization,” in IEEE International Conference on Robotics and Automation, 2020, pp. 7101–7107.
  5. M. Giamou, F. Marić, D. M. Rosen, V. Peretroukhin, N. Roy, I. Petrović, and J. Kelly, “Convex iteration for distance-geometric inverse kinematics,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1952–1959, 2022.
  6. F. Marić, M. Giamou, A. W. Hall, S. Khoubyarian, I. Petrović, and J. Kelly, “Riemannian optimization for distance-geometric inverse kinematics,” IEEE Transactions on Robotics, vol. 38, no. 3, pp. 1703–1722, 2021.
  7. R. J. Webster III and B. A. Jones, “Design and kinematic modeling of constant curvature continuum robots: A review,” The International Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 2010.
  8. P. Rao, Q. Peyron, S. Lilge, and J. Burgner-Kahrs, “How to model tendon-driven continuum robots and benchmark modelling performance,” Frontiers in Robotics and AI, vol. 7, p. 630245, 2021.
  9. I. Singh, O. Lakhal, Y. Amara, V. Coelen, P. M. Pathak, and R. Merzouki, “Performances evaluation of inverse kinematic models of a compact bionic handling assistant,” in IEEE International Conference on Robotics and Biomimetics (ROBIO), 2017, pp. 264–269.
  10. S. Neppalli, M. A. Csencsits, B. A. Jones, and I. D. Walker, “Closed-form inverse kinematics for continuum manipulators,” Advanced Robotics, vol. 23, no. 15, pp. 2077–2091, 2009.
  11. W. Zhang, Z. Yang, T. Dong, and K. Xu, “FABRIKc: an efficient iterative inverse kinematics solver for continuum robots,” in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2018, pp. 346–352.
  12. A. Aristidou and J. Lasenby, “FABRIK: A fast, iterative solver for the inverse kinematics problem,” Graphical Models, vol. 73, no. 5, pp. 243–260, 2011.
  13. D. Kolpashchikov, O. Gerget, and V. Danilov, “FABRIKx: Tackling the inverse kinematics problem of continuum robots with variable curvature,” Robotics, vol. 11, no. 6, p. 128, 2022.
  14. H. Wu, J. Yu, J. Pan, G. Li, and X. Pei, “CRRIK: A fast heuristic algorithm for the inverse kinematics of continuum robot,” Journal of Intelligent & Robotic Systems, vol. 105, no. 3, pp. 1–21, 2022.
  15. S.-S. Chiang, H. Yang, E. Skorina, and C. D. Onal, “SLInKi: State lattice based inverse kinematics-a fast, accurate, and flexible ik solver for soft continuum robot manipulators,” in IEEE International Conference on Automation Science and Engineering (CASE), 2021, pp. 1871–1877.
  16. A. Garriga-Casanovas and F. Rodriguez y Baena, “Kinematics of continuum robots with constant curvature bending and extension capabilities,” Journal of Mechanisms and Robotics, vol. 11, no. 1, p. 011010, 2019.
  17. S. Kim, W. Xu, and H. Ren, “Inverse kinematics with a geometrical approximation for multi-segment flexible curvilinear robots,” Robotics, vol. 8, no. 2, p. 48, 2019.
  18. I. Dokmanic, R. Parhizkar, J. Ranieri, and M. Vetterli, “Euclidean distance matrices: essential theory, algorithms, and applications,” IEEE Signal Processing Magazine, vol. 32, no. 6, pp. 12–30, 2015.
  19. J. M. Porta, L. Ros, and F. Thomas, “Inverse kinematics by distance matrix completion,” 2005.
  20. J. Porta, L. Ros, F. Thomas, and C. Torras, “A Branch-and-Prune Solver for Distance Constraints,” IEEE Transactions on Robotics, vol. 21, pp. 176–187, 2005.
  21. A. M.-C. So and Y. Ye, “Theory of semidefinite programming for sensor network localization,” Mathematical Programming, vol. 109, no. 2, pp. 367–384, 2007.
  22. E. Amanov, T.-D. Nguyen, and J. Burgner-Kahrs, “Tendon-driven continuum robots with extensible sections—a model-based evaluation of path-following motions,” The International Journal of Robotics Research, vol. 40, no. 1, pp. 7–23, 2021.
  23. E. D. Andersen and K. D. Andersen, “The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm,” High performance optimization, pp. 197–232, 2000.
Citations (1)

Summary

We haven't generated a summary for this paper yet.