Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Penalty Gradient Normalization for Generative Adversarial Networks (2306.13576v1)

Published 23 Jun 2023 in cs.CV and cs.LG

Abstract: In this paper, we propose a novel normalization method called penalty gradient normalization (PGN) to tackle the training instability of Generative Adversarial Networks (GANs) caused by the sharp gradient space. Unlike existing work such as gradient penalty and spectral normalization, the proposed PGN only imposes a penalty gradient norm constraint on the discriminator function, which increases the capacity of the discriminator. Moreover, the proposed penalty gradient normalization can be applied to different GAN architectures with little modification. Extensive experiments on three datasets show that GANs trained with penalty gradient normalization outperform existing methods in terms of both Frechet Inception and Distance and Inception Score.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  2. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved techniques for training gans,” Advances in neural information processing systems, vol. 29, 2016.
  3. M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in International conference on machine learning.   PMLR, 2017, pp. 214–223.
  4. T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.
  5. Y.-L. Wu, H.-H. Shuai, Z.-R. Tam, and H.-Y. Chiu, “Gradient normalization for generative adversarial networks,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 6373–6382.
  6. Z. Zhou, J. Liang, Y. Song, L. Yu, H. Wang, W. Zhang, Y. Yu, and Z. Zhang, “Lipschitz generative adversarial nets,” in International Conference on Machine Learning.   PMLR, 2019, pp. 7584–7593.
  7. D. Terjék, “Adversarial lipschitz regularization,” arXiv preprint arXiv:1907.05681, 2019.
  8. M. Arjovsky and L. Bottou, “Towards principled methods for training generative adversarial networks,” arXiv preprint arXiv:1701.04862, 2017.
  9. A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Neural photo editing with introspective adversarial networks,” arXiv preprint arXiv:1609.07093, 2016.
  10. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of wasserstein gans,” Advances in neural information processing systems, vol. 30, 2017.
  11. K. Kurach, M. Lucic, X. Zhai, M. Michalski, and S. Gelly, “The gan landscape: Losses, architectures, regularization, and normalization,” Some Journal, 2018.
  12. S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.
  13. Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a metric for image retrieval,” International journal of computer vision, vol. 40, no. 2, p. 99, 2000.
  14. N. Kodali, J. Abernethy, J. Hays, and Z. Kira, “On convergence and stability of gans,” arXiv preprint arXiv:1705.07215, 2017.
  15. S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generalization and equilibrium in generative adversarial nets (gans),” in International Conference on Machine Learning.   PMLR, 2017, pp. 224–232.
  16. A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised feature learning,” in Proceedings of the fourteenth international conference on artificial intelligence and statistics.   JMLR Workshop and Conference Proceedings, 2011, pp. 215–223.
  17. H. Thanh-Tung, T. Tran, and S. Venkatesh, “Improving generalization and stability of generative adversarial networks,” arXiv preprint arXiv:1902.03984, 2019.
  18. Z. Zhao, S. Singh, H. Lee, Z. Zhang, A. Odena, and H. Zhang, “Improved consistency regularization for gans,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, 2021, pp. 11 033–11 041.
  19. F. Huszár, “How (not) to train your generative model: Scheduled sampling, likelihood, adversary?” arXiv preprint arXiv:1511.05101, 2015.
  20. A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A large data set for nonparametric object and scene recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 30, no. 11, pp. 1958–1970, 2008.
  21. T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved quality, stability, and variation,” arXiv preprint arXiv:1710.10196, 2017.
  22. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” Advances in neural information processing systems, vol. 30, 2017.
  23. X. Gong, S. Chang, Y. Jiang, and Z. Wang, “Autogan: Neural architecture search for generative adversarial networks,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 3224–3234.
  24. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–1034.
  25. H. Zhang, Z. Zhang, A. Odena, and H. Lee, “Consistency regularization for generative adversarial networks,” arXiv preprint arXiv:1910.12027, 2019.
  26. Y. Tian, Q. Wang, Z. Huang, W. Li, D. Dai, M. Yang, J. Wang, and O. Fink, “Off-policy reinforcement learning for efficient and effective gan architecture search,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16.   Springer, 2020, pp. 175–192.
  27. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  28. D. Balduzzi, M. Frean, L. Leary, J. Lewis, K. W.-D. Ma, and B. McWilliams, “The shattered gradients problem: If resnets are the answer, then what is the question?” in International Conference on Machine Learning.   PMLR, 2017, pp. 342–350.
  29. J. H. Lim and J. C. Ye, “Geometric gan,” arXiv preprint arXiv:1705.02894, 2017.
  30. A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.
  31. M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784, 2014.
  32. V. Zadorozhnyy, Q. Cheng, and Q. Ye, “Adaptive weighted discriminator for training generative adversarial networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 4781–4790.
  33. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  34. P. Patel, N. Kumari, M. Singh, and B. Krishnamurthy, “Lt-gan: Self-supervised gan with latent transformation detection,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 3189–3198.
Citations (1)

Summary

We haven't generated a summary for this paper yet.