Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear asymptotic stability and transition threshold for 2D Taylor-Couette flows in Sobolev spaces (2306.13562v1)

Published 23 Jun 2023 in math.AP, math-ph, math.MP, and physics.flu-dyn

Abstract: In this paper, we investigate the stability of the 2-dimensional (2D) Taylor-Couette (TC) flow for the incompressible Navier-Stokes equations. The explicit form of velocity for 2D TC flow is given by $u=(Ar+\frac{B}{r})(-\sin \theta, \cos \theta)T$ with $(r, \theta)\in [1, R]\times \mathbb{S}1$ being an annulus and $A, B$ being constants. Here, $A, B$ encode the rotational effect and $R$ is the ratio of the outer and inner radii of the annular region. Our focus is the long-term behavior of solutions around the steady 2D TC flow. While the laminar solution is known to be a global attractor for 2D channel flows and plane flows, it is unclear whether this is still true for rotating flows with curved geometries. In this article, we prove that the 2D Taylor-Couette flow is asymptotically stable, even at high Reynolds number ($Re\sim \nu{-1}$), with a sharp exponential decay rate of $\exp(-\nu{\frac13}|B|{\frac23}R{-2}t)$ as long as the initial perturbation is less than or equal to $\nu\frac12 |B|{\frac12}R{-2}$ in Sobolev space. The powers of $\nu$ and $B$ in this decay estimate are optimal. It is derived using the method of resolvent estimates and is commonly recognized as the enhanced dissipative effect. Compared to the Couette flow, the enhanced dissipation of the rotating Taylor-Couette flow not only depends on the Reynolds number but also reflects the rotational aspect via the rotational coefficient $B$. The larger the $|B|$, the faster the long-time dissipation takes effect. We also conduct space-time estimates describing inviscid-damping mechanism in our proof. To obtain these inviscid-damping estimates, we find and construct a new set of explicit orthonormal basis of the weighted eigenfunctions for the Laplace operators corresponding to the circular flows. These provide new insights into the mathematical understanding of the 2D Taylor-Couette flows.

Summary

We haven't generated a summary for this paper yet.