2000 character limit reached
Sharp estimates and non-degeneracy of low energy nodal solutions for the Lane-Emden equation in dimension two (2306.13451v1)
Published 23 Jun 2023 in math.AP
Abstract: We study the Lane-Emden problem [\begin{cases} -\Delta u_p =|u_p|{p-1}u_p&\text{in}\quad \Omega, u_p=0 &\text{on}\quad\partial\Omega, \end{cases}] where $\Omega\subset\mathbb R2$ is a smooth bounded domain and $p>1$ is sufficiently large. We obtain sharp estimates and non-degeneracy of low energy nodal solutions $u_p$ (i.e. nodal solutions satisfying $\lim_{p\to+\infty}p\int_{\Omega}|u_p|{p+1}dx=16\pi e$). As applications, we prove that the comparable condition $p(|u_p+|{\infty}-|u_p-|{\infty})=O(1)$ holds automatically for least energy nodal solutions, which confirms a conjecture raised by (Grossi-Grumiau-Pacella, Ann.I.H. Poincare-AN, 30 (2013), 121-140) and (Grossi-Grumiau-Pacella, J.Math.Pures Appl. 101 (2014), 735-754).