Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dermoscopic Dark Corner Artifacts Removal: Friend or Foe? (2306.13446v1)

Published 23 Jun 2023 in cs.CV

Abstract: One of the more significant obstacles in classification of skin cancer is the presence of artifacts. This paper investigates the effect of dark corner artifacts, which result from the use of dermoscopes, on the performance of a deep learning binary classification task. Previous research attempted to remove and inpaint dark corner artifacts, with the intention of creating an ideal condition for models. However, such research has been shown to be inconclusive due to lack of available datasets labelled with dark corner artifacts and detailed analysis and discussion. To address these issues, we label 10,250 skin lesion images from publicly available datasets and introduce a balanced dataset with an equal number of melanoma and non-melanoma cases. The training set comprises 6126 images without artifacts, and the testing set comprises 4124 images with dark corner artifacts. We conduct three experiments to provide new understanding on the effects of dark corner artifacts, including inpainted and synthetically generated examples, on a deep learning method. Our results suggest that introducing synthetic dark corner artifacts which have been superimposed onto the training set improved model performance, particularly in terms of the true negative rate. This indicates that deep learning learnt to ignore dark corner artifacts, rather than treating it as melanoma, when dark corner artifacts were introduced into the training set. Further, we propose a new approach to quantifying heatmaps indicating network focus using a root mean square measure of the brightness intensity in the different regions of the heatmaps. This paper provides a new guideline for skin lesions analysis with an emphasis on reproducibility.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Barata C, Ruela M, Francisco M, et al (2013) Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Systems Journal 8. 10.1109/JSYST.2013.2271540 Bibiloni et al (2017) Bibiloni P, González Hidalgo M, Massanet S (2017) Skin hair removal in dermoscopic images using soft color morphology. pp 322–326, 10.1007/978-3-319-59758-4_37 Bradski (2000) Bradski G (2000) The OpenCV Library. Dr Dobb’s Journal of Software Tools Brinker et al (2019a) Brinker TJ, Hekler A, Enk AH, et al (2019a) A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer 111:148–154. https://doi.org/10.1016/j.ejca.2019.02.005, URL http://www.sciencedirect.com/science/article/pii/S0959804919301443 Brinker et al (2019b) Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Bibiloni P, González Hidalgo M, Massanet S (2017) Skin hair removal in dermoscopic images using soft color morphology. pp 322–326, 10.1007/978-3-319-59758-4_37 Bradski (2000) Bradski G (2000) The OpenCV Library. Dr Dobb’s Journal of Software Tools Brinker et al (2019a) Brinker TJ, Hekler A, Enk AH, et al (2019a) A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer 111:148–154. https://doi.org/10.1016/j.ejca.2019.02.005, URL http://www.sciencedirect.com/science/article/pii/S0959804919301443 Brinker et al (2019b) Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Bradski G (2000) The OpenCV Library. Dr Dobb’s Journal of Software Tools Brinker et al (2019a) Brinker TJ, Hekler A, Enk AH, et al (2019a) A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer 111:148–154. https://doi.org/10.1016/j.ejca.2019.02.005, URL http://www.sciencedirect.com/science/article/pii/S0959804919301443 Brinker et al (2019b) Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Brinker TJ, Hekler A, Enk AH, et al (2019a) A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer 111:148–154. https://doi.org/10.1016/j.ejca.2019.02.005, URL http://www.sciencedirect.com/science/article/pii/S0959804919301443 Brinker et al (2019b) Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  2. Bibiloni P, González Hidalgo M, Massanet S (2017) Skin hair removal in dermoscopic images using soft color morphology. pp 322–326, 10.1007/978-3-319-59758-4_37 Bradski (2000) Bradski G (2000) The OpenCV Library. Dr Dobb’s Journal of Software Tools Brinker et al (2019a) Brinker TJ, Hekler A, Enk AH, et al (2019a) A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer 111:148–154. https://doi.org/10.1016/j.ejca.2019.02.005, URL http://www.sciencedirect.com/science/article/pii/S0959804919301443 Brinker et al (2019b) Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Bradski G (2000) The OpenCV Library. Dr Dobb’s Journal of Software Tools Brinker et al (2019a) Brinker TJ, Hekler A, Enk AH, et al (2019a) A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer 111:148–154. https://doi.org/10.1016/j.ejca.2019.02.005, URL http://www.sciencedirect.com/science/article/pii/S0959804919301443 Brinker et al (2019b) Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Brinker TJ, Hekler A, Enk AH, et al (2019a) A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer 111:148–154. https://doi.org/10.1016/j.ejca.2019.02.005, URL http://www.sciencedirect.com/science/article/pii/S0959804919301443 Brinker et al (2019b) Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  3. Bradski G (2000) The OpenCV Library. Dr Dobb’s Journal of Software Tools Brinker et al (2019a) Brinker TJ, Hekler A, Enk AH, et al (2019a) A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer 111:148–154. https://doi.org/10.1016/j.ejca.2019.02.005, URL http://www.sciencedirect.com/science/article/pii/S0959804919301443 Brinker et al (2019b) Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Brinker TJ, Hekler A, Enk AH, et al (2019a) A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer 111:148–154. https://doi.org/10.1016/j.ejca.2019.02.005, URL http://www.sciencedirect.com/science/article/pii/S0959804919301443 Brinker et al (2019b) Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  4. Brinker TJ, Hekler A, Enk AH, et al (2019a) A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer 111:148–154. https://doi.org/10.1016/j.ejca.2019.02.005, URL http://www.sciencedirect.com/science/article/pii/S0959804919301443 Brinker et al (2019b) Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  5. Brinker TJ, Hekler A, Enk AH, et al (2019b) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001, URL http://www.sciencedirect.com/science/article/pii/S0959804919302217 Buch et al (2021) Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  6. Buch J, Criton S, et al (2021) Dermoscopy saga–a tale of 5 centuries. Indian Journal of Dermatology 66(2):174. 10.4103/ijd.IJD_691_18 Cassidy et al (2022) Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  7. Cassidy B, Kendrick C, Brodzicki A, et al (2022) Analysis of the isic image datasets: Usage, benchmarks and recommendations. Medical Image Analysis 75:102,305. https://doi.org/10.1016/j.media.2021.102305, URL https://www.sciencedirect.com/science/article/pii/S1361841521003509 Codella et al (2018a) Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  8. Codella N, Rotemberg V, Tschandl P, et al (2018a) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). 10.48550/arXiv.1902.03368 Codella et al (2018b) Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  9. Codella NC, Gutman D, Celebi ME, et al (2018b) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, pp 168–172 Combalia et al (2019) Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  10. Combalia M, Codella NCF, Rotemberg V, et al (2019) Bcn20000: Dermoscopic lesions in the wild. 10.48550/arXiv.1908.02288 Esteva et al (2017) Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  11. Esteva A, Kuprel B, Novoa R, et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542. 10.1038/nature21056 Fujisawa et al (2019) Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  12. Fujisawa Y, Otomo Y, Ogata Y, et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. The British Journal of Dermatology 180(2):373–381. https://doi.org/10.1111/bjd.16924 Ganster et al (2001) Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  13. Ganster H, Pinz A, Röhrer R, et al (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239. 10.1109/42.918473 Groh et al (2021) Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  14. Groh M, Harris C, Soenksen L, et al (2021) Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset /10.48550/arXiv.2104.09957 Gutman et al (2016) Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  15. Gutman D, Codella NCF, Celebi E, et al (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). /10.48550/arXiv.1605.01397 Hayes (2018) Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  16. Hayes S (2018) Dermoscopy: an update and personal view. URL https://www.thepmfajournal.com/features/post/dermoscopy-an-update-and-personal-view, [Accessed: 16-08-2022] Jaworek-Korjakowska et al (2021) Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  17. Jaworek-Korjakowska J, Brodzicki A, Cassidy B, et al (2021) Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers 13(23). 10.3390/cancers13236048, URL https://www.mdpi.com/2072-6694/13/23/6048 Jinnai et al (2020) Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  18. Jinnai S, Yamazaki N, Hirano Y, et al (2020) The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8). 10.3390/biom10081123 Koehoorn et al (2015) Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  19. Koehoorn J, Sobiecki A, Boda D, et al (2015) Automated digital hair removal by threshold decomposition and morphological analysis. pp 15–26, 10.1007/978-3-319-18720-4_2 Lund and Clark (2013) Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  20. Lund F, Clark A (2013) Pillow. URL https://github.com/python-pillow/Pillow Mahbod et al (2019) Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  21. Mahbod A, Schaefer G, Wang C, et al (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1229–1233, 10.1109/ICASSP.2019.8683352 Nauta et al (2022) Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  22. Nauta M, Walsh R, Dubowski A, et al (2022) Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1). 10.3390/diagnostics12010040, URL https://www.mdpi.com/2075-4418/12/1/40 Peli (1990) Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  23. Peli E (1990) Contrast in complex images. J Opt Soc Am A 7(10):2032–2040. 10.1364/JOSAA.7.002032, URL http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-10-2032 Pewton and Yap (2022) Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  24. Pewton SW, Yap MH (2022) Dark corner on skin lesion image dataset: Does it matter? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 4830–4838, 10.1109/CVPRW56347.2022.00530 Pham et al (2020) Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  25. Pham TC, Hoang VD, Tran CT, et al (2020) Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp 1–6, 10.1109/MAPR49794.2020.9237778 Ramella (2020) Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  26. Ramella G (2020) Automatic skin lesion segmentation based on saliency and color. pp 452–459, 10.5220/0009144904520459 Ramella (2021) Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  27. Ramella G (2021) Hair removal combining saliency, shape and color. Applied Sciences 11(1). 10.3390/app11010447, URL https://www.mdpi.com/2076-3417/11/1/447 Ramella (2022) Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  28. Ramella G (2022) Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10(2):172–186. 10.1080/21681163.2021.2003248, URL https://doi.org/10.1080/21681163.2021.2003248 Rose (1998) Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  29. Rose LC (1998) Recognizing neoplastic skin lesions: A photo guide. American Family Physician 58(4):873––884. URL https://www.proquest.com/scholarly-journals/recognizing-neoplastic-skin-lesions-photo-guide/docview/234312593/se-2 Rosebrock (2020) Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  30. Rosebrock A (2020) Grad-cam: Visualize class activation maps with keras, tensorflow, and deep learning. URL https://pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/, [Accessed: 10-03-2022] Rotemberg et al (2021) Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  31. Rotemberg V, Kurtansky N, Betz-Stablein B, et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8:34. 10.1038/s41597-021-00815-z Selvaraju et al (2019) Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  32. Selvaraju RR, Cogswell M, Das A, et al (2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128(2):336–359. 10.1007/s11263-019-01228-7, URL https://doi.org/10.1007%2Fs11263-019-01228-7 Sultana et al (2014) Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  33. Sultana A, Dumitrache I, Vocurek M, et al (2014) Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), IEEE, pp 1–4, 10.1109/ICComm.2014.6866757 Szegedy et al (2017) Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  34. Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, https://doi.org/10.48550/arXiv.1602.07261 Tschandl (2018) Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  35. Tschandl P (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. 10.7910/DVN/DBW86T, URL https://doi.org/10.7910/DVN/DBW86T Tschandl et al (2019) Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  36. Tschandl P, Codella N, Akay BN, et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology 20(7):938–947. https://doi.org/10.1016/S1470-2045(19)30333-X, URL https://www.sciencedirect.com/science/article/pii/S147020451930333X Zand et al (2021) Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  37. Zand H, Nguyen N, Zeinali B, et al (2021) A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing 59:1–9. 10.1007/s11517-021-02355-5 Zhou et al (2008) Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  38. Zhou H, Chen M, Gass R, et al (2008) Feature-preserving artifact removal from dermoscopy images. Proceedings of SPIE - The International Society for Optical Engineering 6914. 10.1117/12.770824 Ünver and Ayan (2019) Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72 Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
  39. Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics 9(3). 10.3390/diagnostics9030072, URL https://www.mdpi.com/2075-4418/9/3/72
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Samuel William Pewton (1 paper)
  2. Bill Cassidy (12 papers)
  3. Connah Kendrick (17 papers)
  4. Moi Hoon Yap (41 papers)
Citations (1)