Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New asymptotic expansion formula via Malliavin calculus and its application to rough differential equation driven by fractional Brownian motion (2306.13405v7)

Published 23 Jun 2023 in math.PR, cs.NA, and math.NA

Abstract: This paper presents a novel generic asymptotic expansion formula of expectations of multidimensional Wiener functionals through a Malliavin calculus technique. The uniform estimate of the asymptotic expansion is shown under a weaker condition on the Malliavin covariance matrix of the target Wiener functional. In particular, the method provides a tractable expansion for the expectation of an irregular functional of the solution to a multidimensional rough differential equation driven by fractional Brownian motion with Hurst index $H<1/2$, without using complicated fractional integral calculus for the singular kernel. In a numerical experiment, our expansion shows a much better approximation for a probability distribution function than its normal approximation, which demonstrates the validity of the proposed method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.