Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-constrained Random Forests for Turbulence Model Uncertainty Estimation (2306.13370v2)

Published 23 Jun 2023 in cs.LG and physics.flu-dyn

Abstract: To achieve virtual certification for industrial design, quantifying the uncertainties in simulation-driven processes is crucial. We discuss a physics-constrained approach to account for epistemic uncertainty of turbulence models. In order to eliminate user input, we incorporate a data-driven machine learning strategy. In addition to it, our study focuses on developing an a priori estimation of prediction confidence when accurate data is scarce.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. Journal of Turbulence, 8:N32, 2007. doi: 10.1080/14685240701506896.
  2. Flow over periodic hills – numerical and experimental study in a wide range of reynolds numbers. Computers & Fluids, 38(2):433 – 457, 2009. ISSN 0045-7930. doi: 10.1016/j.compfluid.2008.05.002.
  3. Optimization under turbulence model uncertainty for aerospace design. Physics of Fluids, 31(10):105111, 2019.
  4. Development and application of a cubic eddy-viscosity model of turbulence. International Journal of Heat and Fluid Flow, 17(2):108–115, 1996. ISSN 0142-727X. doi: 10.1016/0142-727X(95)00079-6.
  5. Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms. Renewable Energy, 179:2212–2223, 2021. ISSN 0960-1481. doi: 10.1016/j.renene.2021.08.012.
  6. Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures. Physics of Fluids, 25(11):110822, 2013. doi: 10.1063/1.4824659.
  7. Emory, M. A. Estimating model-form uncertainty in Reynolds-averaged Navier-Stokes closures. PhD thesis, Stanford University, Department of Mechanical Engineering, 2014.
  8. Estimating rans model uncertainty using machine learning. Journal of the Global Power and Propulsion Society, 2021(May):1–14, 2021.
  9. Eigenspace perturbations for uncertainty estimation of single-point turbulence closures. Physical Review Fluids, 2(2):024605, 2017.
  10. Karniadakis, G. Quantifying uncertainty in CFD. Journal of Fluids Engineering-transactions of the ASME, 124(1):2–3, 03 2002. doi: 10.1115/1.1447925.
  11. Uncertainty quantification for RANS predictions of wind loads on buildings. In Proceedings of the XV Conference of the Italian Association for Wind Engineering, pp.  402–412, Cham, 2019. Springer International Publishing.
  12. Direct numerical simulations of converging–diverging channel flow. In Progress in Wall Turbulence: Understanding and Modeling, pp.  203 – 209, 01 2011. doi: 10.1007/978-90-481-9603-6˙21.
  13. Direct numerical simulation of turbulent channel flow up to 𝑅𝑒τ≈5200subscript𝑅𝑒𝜏5200\mathit{Re}_{{\it\tau}}\approx 5200italic_Re start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ≈ 5200. Journal of Fluid Mechanics, 774:395–415, 2015. doi: 10.1017/jfm.2015.268.
  14. Machine learning strategies for systems with invariance properties. Journal of Computational Physics, 318:22–35, 2016.
  15. Applicability of machine learning in uncertainty quantification of turbulence models, 2022.
  16. Evaluation of physics constrained data-driven methods for turbulence model uncertainty quantification. Computers & Fluids, pp.  105837, 2023. ISSN 0045-7930. doi: https://doi.org/10.1016/j.compfluid.2023.105837. URL https://www.sciencedirect.com/science/article/pii/S0045793023000622.
  17. Theoretical analysis of tensor perturbations for uncertainty quantification of reynolds averaged and subgrid scale closures. Physics of Fluids, 31(7):075101, 2019.
  18. Uncertainty estimation for reynolds-averaged navier–stokes predictions of high-speed aircraft nozzle jets. AIAA Journal, 55(11):3999–4004, 2017.
  19. Uncertainty estimation module for turbulence model predictions in su2. AIAA Journal, 57(3):1066–1077, 2019.
  20. Design exploration and optimization under uncertainty. Physics of Fluids, 32(8):085106, 2020.
  21. On predicting the turbulence-induced secondary flows using nonlinear k-ϵitalic-ϵ\epsilonitalic_ϵ models. Physics of Fluids, 8:1856–1868, 07 1996. doi: 10.1063/1.868968.
  22. Verification and Validation in Scientific Computing. 01 2010. doi: 10.1017/CBO9780511760396.
  23. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
  24. Rossi, R. Passive scalar transport in turbulent flows over a wavy wall. PhD thesis, Università degli Studi di Bologna, Bologna, Italy, 2006.
  25. Scott, D. Multivariate density estimation: Theory, practice, and visualization: Second edition. 03 2015. doi: 10.1002/9781118575574.
  26. Augmentation of Turbulence Models Using Field Inversion and Machine Learning. 2017. doi: 10.2514/6.2017-0993.
  27. Speziale, C. G. Analytical methods for the development of Reynolds-Stress closures in turbulence. Annual Review of Fluid Mechanics, 23(1):107–157, 1991. doi: 10.1146/annurev.fl.23.010191.000543.
  28. Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework. Physical Review Fluids, 3(7), Jul 2018. ISSN 2469-990X. doi: 10.1103/physrevfluids.3.074602.
  29. A priori assessment of prediction confidence for data-driven turbulence modeling. Flow, Turbulence and Combustion, 99(1):25–46, mar 2017. doi: 10.1007/s10494-017-9807-0.
  30. Quantification of model uncertainty in RANS simulations: A review. Progress in Aerospace Sciences, 108:1–31, 2019. ISSN 0376-0421. doi: 10.1016/j.paerosci.2018.10.001.

Summary

We haven't generated a summary for this paper yet.