Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Omni-supervised Learning for Rib Fracture Detection from Chest Radiology Images (2306.13301v2)

Published 23 Jun 2023 in cs.CV

Abstract: Deep learning (DL)-based rib fracture detection has shown promise of playing an important role in preventing mortality and improving patient outcome. Normally, developing DL-based object detection models requires a huge amount of bounding box annotation. However, annotating medical data is time-consuming and expertise-demanding, making obtaining a large amount of fine-grained annotations extremely infeasible. This poses a pressing need {for} developing label-efficient detection models to alleviate radiologists' labeling burden. To tackle this challenge, the literature on object detection has witnessed an increase of weakly-supervised and semi-supervised approaches, yet still lacks a unified framework that leverages various forms of fully-labeled, weakly-labeled, and unlabeled data. In this paper, we present a novel omni-supervised object detection network, ORF-Netv2, to leverage as much available supervision as possible. Specifically, a multi-branch omni-supervised detection head is introduced with each branch trained with a specific type of supervision. A co-training-based dynamic label assignment strategy is then proposed to enable flexible and robust learning from the weakly-labeled and unlabeled data. Extensive evaluation was conducted for the proposed framework with three rib fracture datasets on both chest CT and X-ray. By leveraging all forms of supervision, ORF-Netv2 achieves mAPs of 34.7, 44.7, and 19.4 on the three datasets, respectively, surpassing the baseline detector which uses only box annotations by mAP gains of 3.8, 4.8, and 5.0, respectively. Furthermore, ORF-Netv2 consistently outperforms other competitive label-efficient methods over various scenarios, showing a promising framework for label-efficient fracture detection. The code is available at: https://github.com/zhizhongchai/ORF-Net.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. B. S. Talbot, C. P. Gange Jr, A. Chaturvedi, N. Klionsky, S. K. Hobbs, and A. Chaturvedi, “Traumatic rib injury: patterns, imaging pitfalls, complications, and treatment,” Radiographics, vol. 37, no. 2, pp. 628–651, 2017.
  2. K. L. Haines, T. Zens, C. Warner-Hillard, E. DeSouza, H. S. Jung, and S. Agarwal, “Rib fracture location should be evaluated when predicting morbidity and mortality in trauma patients,” The American Surgeon, vol. 84, no. 9, pp. 1462–1465, 2018.
  3. T. Weikert, L. A. Noordtzij, J. Bremerich, B. Stieltjes, V. Parmar, J. Cyriac, G. Sommer, and A. W. Sauter, “Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography,” Korean Journal of Radiology, vol. 21, no. 7, p. 891, 2020.
  4. M. Wu, Z. Chai, G. Qian, H. Lin, Q. Wang, L. Wang, and H. Chen, “Development and evaluation of a deep learning algorithm for rib segmentation and fracture detection from multicenter chest ct images,” Radiology: Artificial Intelligence, vol. 3, no. 5, p. e200248, 2021.
  5. Q.-Q. Zhou, J. Wang, W. Tang, Z.-C. Hu, Z.-Y. Xia, X.-S. Li, R. Zhang, X. Yin, B. Zhang, and H. Zhang, “Automatic detection and classification of rib fractures on thoracic ct using convolutional neural network: accuracy and feasibility,” Korean journal of radiology, vol. 21, no. 7, p. 869, 2020.
  6. L. Luo, H. Chen, Y. Xiao, Y. Zhou, X. Wang, V. Vardhanabhuti, M. Wu, C. Han, Z. Liu, X. H. B. Fang et al., “Rethinking annotation granularity for overcoming shortcuts in deep learning–based radiograph diagnosis: A multicenter study,” Radiology: Artificial Intelligence, vol. 4, no. 5, p. e210299, 2022.
  7. J. Jeong, S. Lee, J. Kim, and N. Kwak, “Consistency-based semi-supervised learning for object detection,” Advances in neural information processing systems, vol. 32, 2019.
  8. Y.-C. Liu, C.-Y. Ma, Z. He, C.-W. Kuo, K. Chen, P. Zhang, B. Wu, Z. Kira, and P. Vajda, “Unbiased teacher for semi-supervised object detection,” arXiv preprint arXiv:2102.09480, 2021.
  9. K. Sohn, Z. Zhang, C.-L. Li, H. Zhang, C.-Y. Lee, and T. Pfister, “A simple semi-supervised learning framework for object detection,” arXiv preprint arXiv:2005.04757, 2020.
  10. D. Zhang, J. Han, G. Cheng, and M.-H. Yang, “Weakly supervised object localization and detection: A survey,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 9, pp. 5866–5885, 2021.
  11. Z. Ren, Z. Yu, X. Yang, M.-Y. Liu, A. G. Schwing, and J. Kautz, “Ufo 2: A unified framework towards omni-supervised object detection,” in European Conference on Computer Vision.   Springer, 2020, pp. 288–313.
  12. L. Luo, H. Chen, Y. Zhou, H. Lin, and P.-A. Heng, “Oxnet: Deep omni-supervised thoracic disease detection from chest x-rays,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2021, pp. 537–548.
  13. P. Wang, Z. Cai, H. Yang, G. Swaminathan, N. Vasconcelos, B. Schiele, and S. Soatto, “Omni-detr: Omni-supervised object detection with transformers,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9367–9376.
  14. Z. Chai, H. Lin, L. Luo, P.-A. Heng, and H. Chen, “Orf-net: Deep omni-supervised rib fracture detection from chest ct scans,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2022, pp. 238–248.
  15. C. Jin, Z. Guo, Y. Lin, L. Luo, and H. Chen, “Label-efficient deep learning in medical image analysis: Challenges and future directions,” arXiv preprint arXiv:2303.12484, 2023.
  16. H. Bilen and A. Vedaldi, “Weakly supervised deep detection networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2846–2854.
  17. K. Yang, D. Li, and Y. Dou, “Towards precise end-to-end weakly supervised object detection network,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8372–8381.
  18. L. Chen, T. Yang, X. Zhang, W. Zhang, and J. Sun, “Points as queries: Weakly semi-supervised object detection by points,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 8823–8832.
  19. S. Fang, Y. Cao, X. Wang, K. Chen, D. Lin, and W. Zhang, “Wssod: A new pipeline for weakly-and semi-supervised object detection,” arXiv preprint arXiv:2105.11293, 2021.
  20. P. Tang, C. Ramaiah, Y. Wang, R. Xu, and C. Xiong, “Proposal learning for semi-supervised object detection,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 2291–2301.
  21. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
  22. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” Advances in neural information processing systems, vol. 28, 2015.
  23. Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: A simple and strong anchor-free object detector,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
  24. B. Zhu, J. Wang, Z. Jiang, F. Zong, S. Liu, Z. Li, and J. Sun, “Autoassign: Differentiable label assignment for dense object detection,” arXiv preprint arXiv:2007.03496, 2020.
  25. S. Li, C. He, R. Li, and L. Zhang, “A dual weighting label assignment scheme for object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9387–9396.
  26. Y. Wang, K. Zheng, C.-T. Cheng, X.-Y. Zhou, Z. Zheng, J. Xiao, L. Lu, C.-H. Liao, and S. Miao, “Knowledge distillation with adaptive asymmetric label sharpening for semi-supervised fracture detection in chest x-rays,” in International Conference on Information Processing in Medical Imaging.   Springer, 2021, pp. 599–610.
  27. Z. Chai, L. Luo, H. Lin, H. Chen, A. Han, and P.-A. Heng, “Deep semi-supervised metric learning with dual alignment for cervical cancer cell detection,” in 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI).   IEEE, 2022, pp. 1–5.
  28. R. Bakalo, J. Goldberger, and R. Ben-Ari, “Weakly and semi supervised detection in medical imaging via deep dual branch net,” Neurocomputing, vol. 421, pp. 15–25, 2021.
  29. D. Wang, Y. Zhang, K. Zhang, and L. Wang, “Focalmix: Semi-supervised learning for 3d medical image detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3951–3960.
  30. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125.
  31. Y. Liu, X. Tang, J. Han, J. Liu, D. Rui, and X. Wu, “Hambox: Delving into mining high-quality anchors on face detection,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).   IEEE, 2020, pp. 13 043–13 051.
  32. W. Ke, T. Zhang, Z. Huang, Q. Ye, J. Liu, and D. Huang, “Multiple anchor learning for visual object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10 206–10 215.
  33. K. Kim and H. S. Lee, “Probabilistic anchor assignment with iou prediction for object detection,” in European Conference on Computer Vision.   Springer, 2020, pp. 355–371.
  34. C. Feng, Y. Zhong, Y. Gao, M. R. Scott, and W. Huang, “Tood: Task-aligned one-stage object detection,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV).   IEEE Computer Society, 2021, pp. 3490–3499.
  35. A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-training,” in Proceedings of the eleventh annual conference on Computational learning theory, 1998, pp. 92–100.
  36. H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese, “Generalized intersection over union: A metric and a loss for bounding box regression,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 658–666.
  37. L. Jin, J. Yang, K. Kuang, B. Ni, Y. Gao, Y. Sun, P. Gao, W. Ma, M. Tan, H. Kang et al., “Deep-learning-assisted detection and segmentation of rib fractures from ct scans: Development and validation of fracnet,” EBioMedicine, vol. 62, p. 103106, 2020.
  38. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  39. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition.   Ieee, 2009, pp. 248–255.
  40. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information processing systems, vol. 32, 2019.
  41. S. Laine and T. Aila, “Temporal ensembling for semi-supervised learning,” arXiv preprint arXiv:1610.02242, 2016.
  42. X. Liu, W. Li, and Y. Yuan, “Decoupled unbiased teacher for source-free domain adaptive medical object detection,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  43. S. Li, M. Li, R. Li, C. He, and L. Zhang, “One-to-few label assignment for end-to-end dense detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 7350–7359.
  44. Z. He, Z. Wang, X. Li, Y. Zhou, T. Guan, and X. Guo, “Research on detection method of lumbar disc herniation based on one-stage object detection,” in Third International Conference on Computer Science and Communication Technology (ICCSCT 2022), vol. 12506.   SPIE, 2022, pp. 794–800.
  45. L. Jiao, C. Kang, S. Dong, P. Chen, G. Li, and R. Wang, “An attention-based feature pyramid network for single-stage small object detection,” Multimedia Tools and Applications, vol. 82, no. 12, pp. 18 529–18 544, 2023.
  46. X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable detr: Deformable transformers for end-to-end object detection,” in International Conference on Learning Representations, 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.