Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Cost-Preference Trade-off Planning with Multiple Temporal Tasks (2306.13222v1)

Published 22 Jun 2023 in cs.RO, cs.AI, and cs.FL

Abstract: Autonomous robots are increasingly utilized in realistic scenarios with multiple complex tasks. In these scenarios, there may be a preferred way of completing all of the given tasks, but it is often in conflict with optimal execution. Recent work studies preference-based planning, however, they have yet to extend the notion of preference to the behavior of the robot with respect to each task. In this work, we introduce a novel notion of preference that provides a generalized framework to express preferences over individual tasks as well as their relations. Then, we perform an optimal trade-off (Pareto) analysis between behaviors that adhere to the user's preference and the ones that are resource optimal. We introduce an efficient planning framework that generates Pareto-optimal plans given user's preference by extending A* search. Further, we show a method of computing the entire Pareto front (the set of all optimal trade-offs) via an adaptation of a multi-objective A* algorithm. We also present a problem-agnostic search heuristic to enable scalability. We illustrate the power of the framework on both mobile robots and manipulators. Our benchmarks show the effectiveness of the heuristic with up to 2-orders of magnitude speedup.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots: Guarantees and feedback for robot behavior,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, pp. 211–236, May 2018.
  2. K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Towards manipulation planning with temporal logic specifications,” in Int. Conf. Robotics and Automation.   IEEE, May 2015, pp. 346–352.
  3. ——, “Reactive synthesis for finite tasks under resource constraints,” in Int. Conf. on Intelligent Robots and Systems (IROS).   Vancouver, BC, Canada: IEEE, Sep. 2017, pp. 5326–5332.
  4. K. Muvvala, P. Amorese, and M. Lahijanian, “Let’s collaborate: Regret-based reactive synthesis for robotic manipulation,” in IEEE Conference on Robotics and Automation.   IEEE, May 2022. [Online]. Available: https://arxiv.org/abs/2203.06861
  5. H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based reactive mission and motion planning,” Robotics, IEEE Transactions on, vol. 25, no. 6, pp. 1370–1381, 2009.
  6. M. Lahijanian, M. Kloetzer, S. Itani, C. Belta, and S. Andersson, “Automatic deployment of autonomous cars in a robotic urban-like environment (RULE),” in Int. Conf. on Robotics and Automation.   Kobe, Japan: IEEE, 2009, pp. 2055–2060.
  7. A. Jorge, S. A. McIlraith et al., “Planning with preferences,” AI Magazine, vol. 29, no. 4, pp. 25–25, 2008.
  8. S. Sohrabi and S. A. McIlraith, “On planning with preferences in htn,” in Proc. of the 12th Int’l Workshop on Non-Monotonic Reasoning (NMR).   sn, 2008, pp. 241–248.
  9. S. Sohrabi, J. A. Baier, and S. A. McIlraith, “Htn planning with preferences,” in Twenty-First International Joint Conference on Artificial Intelligence, 2009.
  10. S. Sohrabi and S. A. McIlraith, “Preference-based web service composition: A middle ground between execution and search,” in International Semantic Web Conference.   Springer, 2010, pp. 713–729.
  11. I. Georgievski and M. Aiello, “An overview of hierarchical task network planning,” arXiv preprint arXiv:1403.7426, 2014.
  12. A. N. Kulkarni and J. Fu, “Opportunistic qualitative planning in stochastic systems with preferences over temporal logic objectives,” arXiv preprint arXiv:2203.13803, 2022.
  13. M. Bienvenu, C. Fritz, and S. A. McIlraith, “Planning with qualitative temporal preferences.” KR, vol. 6, pp. 134–144, 2006.
  14. M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi, “This time the robot settles for a cost: A quantitative approach to temporal logic planning with partial satisfaction,” in Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
  15. H. Rahmani and J. M. O’Kane, “Optimal temporal logic planning with cascading soft constraints,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 2524–2531.
  16. C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-violation scltl motion planning for mobility-on-demand,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 1481–1488.
  17. D. Kamale, E. Karyofylli, and C.-I. Vasile, “Automata-based optimal planning with relaxed specifications,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 6525–6530.
  18. J. Benton, A. Coles, and A. Coles, “Temporal planning with preferences and time-dependent continuous costs,” in Twenty-Second International Conference on Automated Planning and Scheduling, 2012.
  19. N. Mehdipour, C.-I. Vasile, and C. Belta, “Specifying user preferences using weighted signal temporal logic,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 2006–2011, 2020.
  20. C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram, M. Veloso, D. Weld, D. W. SRI, A. Barrett, D. Christianson et al., “Pddl— the planning domain definition language,” Technical Report, Tech. Rep., 1998.
  21. J. A. Baier, F. Bacchus, and S. A. McIlraith, “A heuristic search approach to planning with temporally extended preferences,” Artificial Intelligence, vol. 173, no. 5-6, pp. 593–618, 2009.
  22. A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos, “Deterministic planning in the fifth international planning competition: Pddl3 and experimental evaluation of the planners,” Artificial Intelligence, vol. 173, no. 5-6, pp. 619–668, 2009.
  23. V. Seimetz, R. Eifler, and J. Hoffmann, “Learning temporal plan preferences from examples: An empirical study.” in IJCAI, 2021, pp. 4160–4166.
  24. C. H. Ulloa, W. Yeoh, J. A. Baier, H. Zhang, L. Suazo, and S. Koenig, “A simple and fast bi-objective search algorithm,” in Proceedings of the International Conference on Automated Planning and Scheduling, vol. 30, 2020, pp. 143–151.
  25. L. Mandow and J. L. P. De La Cruz, “Multiobjective a* search with consistent heuristics,” Journal of the ACM (JACM), vol. 57, no. 5, pp. 1–25, 2008.
  26. H. Kress-Gazit, G. Fainekos, and G. J. Pappas, “Where’s Waldo? sensor-based temporal logic motion planning,” in Int. Conf. on Robotics and Automation.   Rome, Italy: IEEE, 2007, pp. 3116–3121.
  27. K. He, M. Lahijanian, E. Kavraki, Lydia, and Y. Vardi, Moshe, “Automated abstraction of manipulation domains for cost-based reactive synthesis,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 285–292, Apr. 2019.
  28. O. Kupferman and M. Y. Vardi, “Model checking of safety properties,” Formal Methods in System Design, vol. 19, no. 3, pp. 291–314, 2001. [Online]. Available: https://link.springer.com/article/10.1023/A:1011254632723
  29. M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi, “This time the robot settles for a cost: A quantitative approach to temporal logic planning with partial satisfaction,” in The Twenty-Ninth AAAI Conference (AAAI-15), AAAI.   Austin, TX: AAAI, Jan. 2015, pp. 3664–3671.
  30. M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-Gazit, and M. Y. Vardi, “Iterative temporal planning in uncertain environments with partial satisfaction guarantees,” IEEE Transactions on Robotics, vol. 32, no. 3, pp. 538–599, May 2016.
  31. J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-violating control strategy synthesis with safety rules,” in Proceedings of the 16th international conference on Hybrid systems: computation and control, 2013, pp. 1–10.
  32. K. Kim and G. Fainekos, “Minimal specification revision for weighted transition systems,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 4068–4074.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com