Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combination of Measurement Data and Domain Knowledge for Simulation of Halbach Arrays with Bayesian Inference (2306.12844v1)

Published 22 Jun 2023 in cs.CE

Abstract: Accelerator magnets made from blocks of permanent magnets in a zero-clearance configuration are known as Halbach arrays. The objective of this work is the fusion of knowledge from different measurement sources (material and field) and domain knowledge (magnetostatics) to obtain an updated magnet model of a Halbach array. From Helmholtz-coil measurements of the magnetized blocks, a prior distribution of the magnetization is estimated. Measurements of the magnetic flux density are used to derive, by means of Bayesian inference, a posterior distribution. The method is validated on simulated data and applied to measurements of a dipole of the FASER detector. The updated magnet model of the FASER dipole describes the magnetic flux density one order of magnitude better than the prior magnet model.

Summary

We haven't generated a summary for this paper yet.