Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Physics-guided neural networks for inversion-based feedforward control applied to hybrid stepper motors (2306.12817v1)

Published 22 Jun 2023 in eess.SY and cs.SY

Abstract: Rotary motors, such as hybrid stepper motors (HSMs), are widely used in industries varying from printing applications to robotics. The increasing need for productivity and efficiency without increasing the manufacturing costs calls for innovative control design. Feedforward control is typically used in tracking control problems, where the desired reference is known in advance. In most applications, this is the case for HSMs, which need to track a periodic angular velocity and angular position reference. Performance achieved by feedforward control is limited by the accuracy of the available model describing the inverse system dynamics. In this work, we develop a physics-guided neural network (PGNN) feedforward controller for HSMs, which can learn the effect of parasitic forces from data and compensate for it, resulting in improved accuracy. Indeed, experimental results on an HSM used in printing industry show that the PGNN outperforms conventional benchmarks in terms of the mean-absolute tracking error.

Summary

We haven't generated a summary for this paper yet.