Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CEMSSL: Conditional Embodied Self-Supervised Learning is All You Need for High-precision Multi-solution Inverse Kinematics of Robot Arms (2306.12718v2)

Published 22 Jun 2023 in cs.RO

Abstract: In the field of signal processing for robotics, the inverse kinematics of robot arms presents a significant challenge due to multiple solutions caused by redundant degrees of freedom (DOFs). Precision is also a crucial performance indicator for robot arms. Current methods typically rely on conditional deep generative models (CDGMs), which often fall short in precision. In this paper, we propose Conditional Embodied Self-Supervised Learning (CEMSSL) and introduce a unified framework based on CEMSSL for high-precision multi-solution inverse kinematics learning. This framework enhances the precision of existing CDGMs by up to 2-3 orders of magnitude while maintaining their original properties. Furthermore, our method is extendable to other fields of signal processing where obtaining multi-solution data in advance is challenging, as well as to other problems involving multi-solution inverse processes.

Summary

We haven't generated a summary for this paper yet.