Quantum droplets with particle imbalance in one-dimensional optical lattices (2306.12283v2)
Abstract: We study the formation of particle-imbalanced quantum droplets in a one-dimensional optical lattice containing a binary bosonic mixture at zero temperature. To understand the effects of the imbalance from both the few- and many-body perspectives, we employ density matrix renormalization group (DMRG) simulations and perform the extrapolation to the thermodynamic limit. In contrast to the particle-balanced case, not all bosons are paired, resulting in an interplay between bound states and individual atoms that leads to intriguing phenomena. Quantum droplets manage to sustain a small particle imbalance, resulting in an effective magnetization. However, as the imbalance is further increased, a critical point is eventually crossed, and the droplets start to expel the excess particles while the magnetization in the bulk remains constant. Remarkably, the unpaired particles on top of the quantum droplet effectively form a super Tonks-Girardeau (hard-rod) gas. The expulsion point coincides with the critical density at which the size of the super Tonks-Girardeau gas matches the size of the droplet.
- Observation of quantum droplets in a strongly dipolar bose gas, Phys. Rev. Lett. 116, 215301 (2016), 10.1103/PhysRevLett.116.215301.
- Self-bound droplets of a dilute magnetic quantum liquid, Nature 539(7628), 259 (2016).
- Quantum-fluctuation-driven crossover from a dilute bose-einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6, 041039 (2016), 10.1103/PhysRevX.6.041039.
- Quantum liquid droplets in a mixture of bose-einstein condensates, Science 359(6373), 301 (2018).
- Bright soliton to quantum droplet transition in a mixture of bose-einstein condensates, Phys. Rev. Lett. 120, 135301 (2018), 10.1103/PhysRevLett.120.135301.
- Self-bound quantum droplets of atomic mixtures in free space, Phys. Rev. Lett. 120, 235301 (2018), 10.1103/PhysRevLett.120.235301.
- Observation of quantum droplets in a heteronuclear bosonic mixture, Phys. Rev. Research 1, 033155 (2019), 10.1103/PhysRevResearch.1.033155.
- D. S. Petrov, Quantum mechanical stabilization of a collapsing bose-bose mixture, Phys. Rev. Lett. 115, 155302 (2015), 10.1103/PhysRevLett.115.155302.
- New states of matter with fine-tuned interactions: quantum droplets and dipolar supersolids, Reports on Progress in Physics 84(1), 012403 (2020), 10.1088/1361-6633/abc9ab.
- Helium nanodroplets: An overview, Journal of low temperature physics 142(1), 1 (2006).
- I. Bloch, Ultracold quantum gases in optical lattices, Nature physics 1(1), 23 (2005).
- K. V. Krutitsky, Ultracold bosons with short-range interaction in regular optical lattices, Physics Reports 607, 1 (2016).
- M. Lewenstein, A. Sanpera and V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems, OUP Oxford (2012).
- H. Saito, Solving the bose–hubbard model with machine learning, Journal of the Physical Society of Japan 86(9), 093001 (2017).
- Quantum optical lattices for emergent many-body phases of ultracold atoms, Physical review letters 115(24), 243604 (2015).
- Unsupervised phase discovery with deep anomaly detection, Physical Review Letters 125(17), 170603 (2020).
- A. Le Boité, G. Orso and C. Ciuti, Steady-state phases and tunneling-induced instabilities in the driven dissipative bose-hubbard model, Physical review letters 110(23), 233601 (2013).
- The dissipative bose-hubbard model, The European Physical Journal Special Topics 224(11), 2127 (2015).
- T. Sowiński and M. Á. García-March, One-dimensional mixtures of several ultracold atoms: a review, Reports on Progress in Physics 82(10), 104401 (2019).
- Observation of reduced three-body recombination in a correlated 1d degenerate bose gas, Physical review letters 92(19), 190401 (2004).
- M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, Journal of Mathematical Physics 1(6), 516 (1960).
- Ultradilute low-dimensional liquids, Phys. Rev. Lett. 117, 100401 (2016), 10.1103/PhysRevLett.117.100401.
- Quantum droplets of bosonic mixtures in a one-dimensional optical lattice, Physical Review Research 2(2), 022008 (2020).
- Universal dimerized quantum droplets in a one-dimensional lattice, Phys. Rev. Lett. 126, 023001 (2021), 10.1103/PhysRevLett.126.023001.
- D. W. L. Sprung and J. Martorell, The symmetrized Fermi function and its transforms, Journal of Physics A: Mathematical and General 31(44), 8973 (1998), 10.1088/0305-4470/31/44/020.
- G. Astrakharchik and B. A. Malomed, Dynamics of one-dimensional quantum droplets, Physical Review A 98(1), 013631 (2018).
- Atomic three-body loss as a dynamical three-body interaction, Physical review letters 102(4), 040402 (2009).
- Few-body bound states of two-dimensional bosons, Phys. Rev. A 101, 041602 (2020), 10.1103/PhysRevA.101.041602.
- Modern quantum mechanics, revised edition (1995).
- K. Yang and Y.-Q. Li, Rigorous proof of pseudospin ferromagnetism in two-component bosonic systems with component-independent interactions, International Journal of Modern Physics B 17(07), 1027 (2003).
- D. M. Stamper-Kurn and M. Ueda, Spinor bose gases: Symmetries, magnetism, and quantum dynamics, Reviews of Modern Physics 85(3), 1191 (2013).
- A. Lenard, Momentum distribution in the ground state of the one-dimensional system of impenetrable bosons, Journal of Mathematical Physics 5(7), 930 (1964).
- Beyond the tonks-girardeau gas: Strongly correlated regime in quasi-one-dimensional bose gases, Phys. Rev. Lett. 95, 190407 (2005), 10.1103/PhysRevLett.95.190407.
- Counterflow and paired superfluidity in one-dimensional bose mixtures in optical lattices, Phys. Rev. A 80, 023619 (2009), 10.1103/PhysRevA.80.023619.
- Strictly single-site dmrg algorithm with subspace expansion, Physical Review B 91(15), 155115 (2015).
- J. Hauschild and F. Pollmann, Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy), SciPost Phys. Lect. Notes p. 5 (2018), 10.21468/SciPostPhysLectNotes.5.
- C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators (1950).
- R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Annals of Physics 349, 117 (2014), https://doi.org/10.1016/j.aop.2014.06.013.