Practical approaches to analyzing PTA data: Cosmic strings with six pulsars (2306.12234v3)
Abstract: We search for a stochastic gravitational wave background (SGWB) generated by a network of cosmic strings using six millisecond pulsars from Data Release 2 (DR2) of the European Pulsar Timing Array (EPTA). We perform a Bayesian analysis considering two models for the network of cosmic string loops, and compare it to a simple power-law model which is expected from the population of supermassive black hole binaries. Our main strong assumption is that the previously reported common red noise process is a SGWB. We find that the one-parameter cosmic string model is slightly favored over a power-law model thanks to its simplicity. If we assume a two-component stochastic signal in the data (supermassive black hole binary population and the signal from cosmic strings), we get a $95\%$ upper limit on the string tension of $\log_{10}(G\mu) < -9.9$ ($-10.5$) for the two cosmic string models we consider. In extended two-parameter string models, we were unable to constrain the number of kinks. We test two approximate and fast Bayesian data analysis methods against the most rigorous analysis and find consistent results. These two fast and efficient methods are applicable to all SGWBs, independent of their source, and will be crucial for analysis of extended data sets.
- S. Chen et al., Monthly Notices of the Royal Astronomical Society 508, 4970 (2021), https://academic.oup.com/mnras/article-pdf/508/4/4970/40979667/stab2833.pdf .
- N. Arzoumanian et al, ApJ 905, L34 (2020), arXiv:2009.04496 [astro-ph.HE] .
- P. c. B. Goncharov et al, The Astrophysical Journal Letters 917, L19 (2021).
- J. Antoniadis et al., Monthly Notices of the Royal Astronomical Society 510, 4873 (2022).
- J. Antoniadis et al. (EPTA), Astron. Astrophys. 678, A50 (2023), arXiv:2306.16214 [astro-ph.HE] .
- G. Agazie et al., The Astrophysical Journal Letters 951, L8 (2023a).
- H. Xu et al., Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
- G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 952, L37 (2023b), arXiv:2306.16220 [astro-ph.HE] .
- A. Sesana, Monthly Notices of the Royal Astronomical Society: Letters 433, L1 (2013a).
- E. S. Phinney, “A practical theorem on gravitational wave backgrounds,” (2001), arXiv:astro-ph/0108028 [astro-ph] .
- J. Ellis and M. Lewicki, Phys. Rev. Lett. 126, 041304 (2021), arXiv:2009.06555 [astro-ph.CO] .
- M. Hindmarsh and J. Kume, Journal of Cosmology and Astroparticle Physics 2023, 045 (2023).
- H. B. Nielsen and P. Olesen, Nucl. Phys. B 61, 45 (1973).
- T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
- T. W. B. Kibble, Nucl. Phys. B 252, 227 (1985), [Erratum: Nucl.Phys.B 261, 750 (1985)].
- C. J. A. P. Martins and E. P. S. Shellard, Phys. Rev. D 73, 043515 (2006), arXiv:astro-ph/0511792 .
- K. D. Olum and V. Vanchurin, Phys. Rev. D 75, 063521 (2007), arXiv:astro-ph/0610419 .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 97, 102002 (2018), arXiv:1712.01168 [gr-qc] .
- P. Auclair et al. (LISA Cosmology Working Group), (2022), arXiv:2204.05434 [astro-ph.CO] .
- R. W. Hellings and G. S. Downs, The Astrophysical Journal 265 (1983).
- A. Chalumeau et al., Monthly Notices of the Royal Astronomical Society 509, 5538 (2021).
- R. van Haasteren and Y. Levin, Monthly Notices of the Royal Astronomical Society 428, 1147 (2012).
- R. van Haasteren and M. Vallisneri, Physical Review D 90 (2014), 10.1103/physrevd.90.104012.
- W. G. Lamb, S. R. Taylor, and R. van Haasteren, “The need for speed: Rapid refitting techniques for bayesian spectral characterization of the gravitational wave background using ptas,” (2023), arXiv:2303.15442 [astro-ph.HE] .
- C. J. Moore and A. Vecchio, Nature Astronomy 5, 1268 (2021).
- T. Damour and A. Vilenkin, Physical Review D 64 (2001), 10.1103/physrevd.64.064008.
- C. Ringeval and T. Suyama, Journal of Cosmology and Astroparticle Physics 2017, 027 (2017).
- A. Vilenkin and E. Shellard, Cosmic Strings and Other Topological Defects, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1994).
- N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- P. Auclair et al., JCAP 04, 034 (2020c), arXiv:1909.00819 [astro-ph.CO] .
- J. J. Blanco-Pillado and K. D. Olum, Physical Review D 96 (2017), 10.1103/physrevd.96.104046.
- P. G. Auclair, JCAP 11, 050 (2020), arXiv:2009.00334 [astro-ph.CO] .
- J. A. Ellis, M. Vallisneri, S. R. Taylor, and P. T. Baker, “ENTERPRISE: Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE,” (2020).
- J. Ellis and R. van Haasteren, “jellis18/ptmcmcsampler: Official release,” (2017).
- Z. Arzoumanian et al., The Astrophysical Journal 859, 47 (2018).
- J. Skilling, Bayesian Analysis 1, 833 (2006).
- S. Koposov, J. Speagle, K. Barbary, G. Ashton, E. Bennett, J. Buchner, C. Scheffler, B. Cook, C. Talbot, J. Guillochon, P. Cubillos, A. A. Ramos, B. Johnson, D. Lang, Ilya, M. Dartiailh, A. Nitz, A. McCluskey, and A. Archibald, “joshspeagle/dynesty: v2.1.3,” (2023).
- J. S. Speagle, Monthly Notices of the Royal Astronomical Society 493, 3132–3158 (2020).