Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalizable Metric Network for Cross-domain Person Re-identification (2306.11991v2)

Published 21 Jun 2023 in cs.CV

Abstract: Person Re-identification (Re-ID) is a crucial technique for public security and has made significant progress in supervised settings. However, the cross-domain (i.e., domain generalization) scene presents a challenge in Re-ID tasks due to unseen test domains and domain-shift between the training and test sets. To tackle this challenge, most existing methods aim to learn domain-invariant or robust features for all domains. In this paper, we observe that the data-distribution gap between the training and test sets is smaller in the sample-pair space than in the sample-instance space. Based on this observation, we propose a Generalizable Metric Network (GMN) to further explore sample similarity in the sample-pair space. Specifically, we add a Metric Network (M-Net) after the main network and train it on positive and negative sample-pair features, which is then employed during the test stage. Additionally, we introduce the Dropout-based Perturbation (DP) module to enhance the generalization capability of the metric network by enriching the sample-pair diversity. Moreover, we develop a Pair-Identity Center (PIC) loss to enhance the model's discrimination by ensuring that sample-pair features with the same pair-identity are consistent. We validate the effectiveness of our proposed method through a lot of experiments on multiple benchmark datasets and confirm the value of each module in our GMN.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (100)
  1. L. Qi, L. Wang, J. Huo, Y. Shi, X. Geng, and Y. Gao, “Adversarial camera alignment network for unsupervised cross-camera person re-identification,” IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), vol. 32, no. 5, pp. 2921–2936, 2021.
  2. L. Qi, L. Wang, Y. Shi, and X. Geng, “A novel mix-normalization method for generalizable multi-source person re-identification,” IEEE Transactions on Multimedia (TMM), 2022.
  3. L. Zheng, Y. Yang, and A. G. Hauptmann, “Person re-identification: Past, present and future,” arXiv preprint arXiv:1610.02984, 2016.
  4. M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. Hoi, “Deep learning for person re-identification: A survey and outlook,” arXiv preprint arXiv:2001.04193, 2020.
  5. Q. Leng, M. Ye, and Q. Tian, “A survey of open-world person re-identification,” IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), vol. 30, no. 4, pp. 1092–1108, 2020.
  6. L. Qi, L. Wang, J. Huo, Y. Shi, and Y. Gao, “Progressive cross-camera soft-label learning for semi-supervised person re-identification,” IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), vol. 30, no. 9, pp. 2815–2829, 2020.
  7. M. Li, X. Zhu, and S. Gong, “Unsupervised tracklet person re-identification,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 42, no. 7, pp. 1770–1782, 2020.
  8. P. Chen, W. Liu, P. Dai, J. Liu, Q. Ye, M. Xu, Q. Chen, and R. Ji, “Occlude them all: Occlusion-aware attention network for occluded person re-id,” in International Conference on Computer Vision (ICCV), 2021, pp. 11 833–11 842.
  9. F. Ma, X. Jing, X. Zhu, Z. Tang, and Z. Peng, “True-color and grayscale video person re-identification,” IEEE Transactions on Information Forensics and Security (TIFS), vol. 15, pp. 115–129, 2020.
  10. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning research (JMLR), vol. 9, no. 11, pp. 2579–2605, 2008.
  11. C. Zhao, X. Lv, Z. Zhang, W. Zuo, J. Wu, and D. Miao, “Deep fusion feature representation learning with hard mining center-triplet loss for person re-identification,” IEEE Transactions on Multimedia (TMM), vol. 22, no. 12, pp. 3180–3195, 2020.
  12. L. Wei, S. Zhang, H. Yao, W. Gao, and Q. Tian, “GLAD: global-local-alignment descriptor for scalable person re-identification,” IEEE Transactions on Multimedia (TMM), vol. 21, no. 4, pp. 986–999, 2019.
  13. A. Wu, W. Zheng, X. Guo, and J. Lai, “Distilled person re-identification: Towards a more scalable system,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 1187–1196.
  14. W. Li, X. Zhu, and S. Gong, “Harmonious attention network for person re-identification,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 2285–2294.
  15. Z. Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang, and J. Kautz, “Joint discriminative and generative learning for person re-identification,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2138–2147.
  16. L. Qi, L. Wang, J. Huo, Y. Shi, and Y. Gao, “Greyreid: A novel two-stream deep framework with rgb-grey information for person re-identification,” ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 17, no. 1, pp. 27:1–27:22, 2021.
  17. F. Yang, K. Yan, S. Lu, H. Jia, D. Xie, Z. Yu, X. Guo, F. Huang, and W. Gao, “Part-aware progressive unsupervised domain adaptation for person re-identification,” IEEE Transactions on Multimedia (TMM), vol. 23, pp. 1681–1695, 2021.
  18. Y. Zhai, S. Lu, Q. Ye, X. Shan, J. Chen, R. Ji, and Y. Tian, “Ad-cluster: Augmented discriminative clustering for domain adaptive person re-identification,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 9018–9027.
  19. A. Wu, W. Zheng, and J. Lai, “Unsupervised person re-identification by camera-aware similarity consistency learning,” in International Conference on Computer Vision (ICCV), 2019, pp. 6921–6930.
  20. G. Chen, Y. Lu, J. Lu, and J. Zhou, “Deep credible metric learning for unsupervised domain adaptation person re-identification,” in European Conference on Computer Vision (ECCV), 2020, pp. 643–659.
  21. L. Qi, L. Wang, J. Huo, L. Zhou, Y. Shi, and Y. Gao, “A novel unsupervised camera-aware domain adaptation framework for person re-identification,” in International Conference on Computer Vision (ICCV), 2019, pp. 8079–8088.
  22. H. Li, Y. Chen, D. Tao, Z. Yu, and G. Qi, “Attribute-aligned domain-invariant feature learning for unsupervised domain adaptation person re-identification,” IEEE Transactions on Information Forensics and Security (TIFS), vol. 16, pp. 1480–1494, 2021.
  23. A. Khatun, S. Denman, S. Sridharan, and C. Fookes, “End-to-end domain adaptive attention network for cross-domain person re-identification,” IEEE Transactions on Information Forensics and Security (TIFS), vol. 16, pp. 3803–3813, 2021.
  24. Q. Lin, Y. Liu, W. Wen, Z. Tao, C. Ouyang, and Y. Wan, “Ensemble making few-shot learning stronger,” Data Intelligence (DI), vol. 4, no. 3, pp. 529–551, 2022.
  25. K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain generalization: A survey,” arXiv preprint arXiv:2103.02503, 2021.
  26. S. Liao and L. Shao, “Interpretable and generalizable person re-identification with query-adaptive convolution and temporal lifting,” in European Conference on Computer Vision (ECCV), 2020, pp. 456–474.
  27. Y. Zhao, Z. Zhong, F. Yang, Z. Luo, Y. Lin, S. Li, and N. Sebe, “Learning to generalize unseen domains via memory-based multi-source meta-learning for person re-identification,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 6277–6286.
  28. Y. Dai, X. Li, J. Liu, Z. Tong, and L. Duan, “Generalizable person re-identification with relevance-aware mixture of experts,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 16 145–16 154.
  29. B. Xu, J. Liang, L. He, and Z. Sun, “Mimic embedding via adaptive aggregation: Learning generalizable person re-identification,” in European Conference on Computer Vision (ECCV), 2022, pp. 372–388.
  30. P. Zhang, H. Dou, Y. Yu, and X. Li, “Adaptive cross-domain learning for generalizable person re-identification,” in European Conference on Computer Vision (ECCV), 2022, pp. 215–232.
  31. L. Qi, J. Shen, J. Liu, Y. Shi, and X. Geng, “Label distribution learning for generalizable multi-source person re-identification,” IEEE Transactions on Information Forensics and Security (TIFS), vol. 17, pp. 3139–3150, 2022.
  32. L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person re-identification: A benchmark,” in International Conference on Computer Vision (ICCV), 2015, pp. 1116–1124.
  33. L. Wei, S. Zhang, W. Gao, and Q. Tian, “Person transfer gan to bridge domain gap for person re-identification,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 79–88.
  34. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
  35. J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “Imagenet: A large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 248–255.
  36. G. Zhang, Y. Ge, Z. Dong, H. Wang, Y. Zheng, and S. Chen, “Deep high-resolution representation learning for cross-resolution person re-identification,” IEEE Transactions on Image Processing (TIP), vol. 30, pp. 8913–8925, 2021.
  37. G. Zhang, Z. Luo, Y. Chen, Y. Zheng, and W. Lin, “Illumination unification for person re-identification,” IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2022.
  38. C. Eom and B. Ham, “Learning disentangled representation for robust person re-identification,” in Advances in Neural Information Processing Systems (NeurIPS), 2019, pp. 5298–5309.
  39. J. Jia, Q. Ruan, and T. M. Hospedales, “Frustratingly easy person re-identification: Generalizing person re-id in practice,” in British Machine Vision Conference (BMVC), 2019, p. 117.
  40. X. Jin, C. Lan, W. Zeng, Z. Chen, and L. Zhang, “Style normalization and restitution for generalizable person re-identification,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 3140–3149.
  41. S. Choi, T. Kim, M. Jeong, H. Park, and C. Kim, “Meta batch-instance normalization for generalizable person re-identification,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 3425–3435.
  42. C. Lin, Y. Cheng, and Y. F. Wang, “Domain generalized person re-identification via cross-domain episodic learning,” in 25th International Conference on Pattern Recognition (ICPR), 2020, pp. 6758–6763.
  43. J. Song, Y. Yang, Y. Song, T. Xiang, and T. M. Hospedales, “Generalizable person re-identification by domain-invariant mapping network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 719–728.
  44. P. Chen, P. Dai, J. Liu, F. Zheng, M. Xu, Q. Tian, and R. Ji, “Dual distribution alignment network for generalizable person re-identification,” in Association for the Advancement of Artificial Intelligence (AAAI), 2021, pp. 1054–1062.
  45. C. Luo, C. Song, and Z. Zhang, “Generalizing person re-identification by camera-aware invariance learning and cross-domain mixup,” in European Conference on Computer Vision (ECCV), 2020, pp. 224–241.
  46. Y. Yuan, W. Chen, T. Chen, Y. Yang, Z. Ren, Z. Wang, and G. Hua, “Calibrated domain-invariant learning for highly generalizable large scale re-identification,” in IEEE Winter Conference on Applications of Computer Vision(WACV), 2020, pp. 3578–3587.
  47. Z. Zhuang, L. Wei, L. Xie, T. Zhang, H. Zhang, H. Wu, H. Ai, and Q. Tian, “Rethinking the distribution gap of person re-identification with camera-based batch normalization,” in European Conference on Computer Vision (ECCV), 2020, pp. 140–157.
  48. H. Ni, J. Song, X. Luo, F. Zheng, W. Li, and H. T. Shen, “Meta distribution alignment for generalizable person re-identification,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 2487–2496.
  49. H. Ni, Y. Li, L. Gao, H. T. Shen, and J. Song, “Part-aware transformer for generalizable person re-identification,” in IEEE International Conference on Computer Vision (ICCV), 2023, pp. 11 280–11 289.
  50. B. Jiao, L. Liu, L. Gao, G. Lin, L. Yang, S. Zhang, P. Wang, and Y. Zhang, “Dynamically transformed instance normalization network for generalizable person re-identification,” in European Conference on Computer Vision (ECCV), 2022, pp. 285–301.
  51. N. Pu, W. Chen, Y. Liu, E. M. Bakker, and M. S. Lew, “Lifelong person re-identification via adaptive knowledge accumulation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 7901–7910.
  52. N. Pu, Z. Zhong, N. Sebe, and M. S. Lew, “A memorizing and generalizing framework for lifelong person re-identification,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023.
  53. Q. Zheng, H. Wen, M. Wang, G. Qi, and C. Bai, “Faster zero-shot multi-modal entity linking via visual-linguistic representation,” Data Intelligence (DI), vol. 4, no. 3, pp. 493–508, 2022.
  54. H. Nam, H. Lee, J. Park, W. Yoon, and D. Yoo, “Reducing domain gap by reducing style bias,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 8690–8699.
  55. Y. Wang, L. Qi, Y. Shi, and Y. Gao, “Feature-based style randomization for domain generalization,” IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), vol. 32, no. 8, pp. 5495–5509, 2022.
  56. X. Yue, Y. Zhang, S. Zhao, A. L. Sangiovanni-Vincentelli, K. Keutzer, and B. Gong, “Domain randomization and pyramid consistency: Simulation-to-real generalization without accessing target domain data,” in International Conference on Computer Vision (ICCV), 2019, pp. 2100–2110.
  57. F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi, “Domain generalization by solving jigsaw puzzles,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2229–2238.
  58. Y. Balaji, S. Sankaranarayanan, and R. Chellappa, “Metareg: Towards domain generalization using meta-regularization,” in Advances in Neural Information Processing Systems (NeurIPS), 2018, pp. 1006–1016.
  59. D. Li, J. Zhang, Y. Yang, C. Liu, Y. Song, and T. M. Hospedales, “Episodic training for domain generalization,” in International Conference on Computer Vision (ICCV), 2019, pp. 1446–1455.
  60. Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, “Deep domain generalization via conditional invariant adversarial networks,” in European Conference on Computer Vision (ECCV), 2018, pp. 647–663.
  61. J. Zhang, L. Qi, Y. Shi, and Y. Gao, “Generalizable model-agnostic semantic segmentation via target-specific normalization,” Pattern Recognition (PR), vol. 122, p. 108292, 2022.
  62. S. Lingwal, K. K. Bhatia, and M. Singh, “Semantic segmentation of landcover for cropland mapping and area estimation using machine learning techniques,” Data Intelligence (DI), vol. 5, no. 2, pp. 370–387, 2023.
  63. S. Zhao, M. Gong, T. Liu, H. Fu, and D. Tao, “Domain generalization via entropy regularization,” in Advances in Neural Information Processing Systems (NeurIPS), 2020.
  64. K. Muandet, D. Balduzzi, and B. Schölkopf, “Domain generalization via invariant feature representation,” in International Conference on Machine Learning (ICML), 2013, pp. 10–18.
  65. M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Sridharan, “Correlation-aware adversarial domain adaptation and generalization,” Pattern Recognition (PR), vol. 100, p. 107124, 2020.
  66. H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization with adversarial feature learning,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 5400–5409.
  67. R. Gong, W. Li, Y. Chen, and L. V. Gool, “DLOW: domain flow for adaptation and generalization,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2477–2486.
  68. M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Sridharan, “Multi-component image translation for deep domain generalization,” in IEEE Winter Conference on Applications of Computer Vision (WACV).   IEEE, 2019, pp. 579–588.
  69. J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in International Conference on Computer Vision (ICCV), 2017, pp. 2242–2251.
  70. R. Aversa, P. Coronica, C. De Nobili, and S. Cozzini, “Deep learning, feature learning, and clustering analysis for sem image classification,” Data Intelligence (DI), vol. 2, no. 4, pp. 513–528, 2020.
  71. A. Subramaniam, M. Chatterjee, and A. Mittal, “Deep neural networks with inexact matching for person re-identification,” Advances in Neural Information Processing Systems (NeurIPS), vol. 29, 2016.
  72. Y. Zhang, X. Li, L. Zhao, and Z. Zhang, “Semantics-aware deep correspondence structure learning for robust person re-identification.” in International Joint Conference on Artificial Intelligence (IJCAI), 2016, pp. 3545–3551.
  73. W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing neural network for person re-identification,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 152–159.
  74. E. Ahmed, M. Jones, and T. K. Marks, “An improved deep learning architecture for person re-identification,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3908–3916.
  75. Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning approach for deep face recognition,” in European Conference on Computer Vision (ECCV), 2016, pp. 499–515.
  76. D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing ingredient for fast stylization,” arXiv preprint arXiv:1607.08022, 2016.
  77. H. Luo, W. Jiang, Y. Gu, F. Liu, X. Liao, S. Lai, and J. Gu, “A strong baseline and batch normalization neck for deep person re-identification,” IEEE Transactions on Multimedia (TMM), vol. 22, no. 10, pp. 2597–2609, 2020.
  78. Y. Fu, Y. Wei, G. Wang, Y. Zhou, H. Shi, and T. S. Huang, “Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification,” in International Conference on Computer Vision (ICCV), 2019, pp. 6111–6120.
  79. I. Albuquerque, J. Monteiro, M. Darvishi, T. H. Falk, and I. Mitliagkas, “Generalizing to unseen domains via distribution matching,” arXiv preprint arXiv:1911.00804, 2019.
  80. J. Wang, C. Lan, C. Liu, Y. Ouyang, and T. Qin, “Generalizing to unseen domains: A survey on domain generalization,” in International Joint Conference on Artificial Intelligence, (IJCAI), 2021, pp. 4627–4635.
  81. Z. Zheng, L. Zheng, and Y. Yang, “A discriminatively learned cnn embedding for person reidentification,” ACM transactions on multimedia computing, communications, and applications (TOMM), vol. 14, no. 1, pp. 1–20, 2017.
  82. H. Chen, Y. Wang, Y. Shi, K. Yan, M. Geng, Y. Tian, and T. Xiang, “Deep transfer learning for person re-identification,” in IEEE Fourth International Conference on Multimedia Big Data (BigMM), 2018, pp. 1–5.
  83. R. P. Duin and z. Pekalska, “The dissimilarity space: Bridging structural and statistical pattern recognition,” Pattern Recognition Letters (PRL), vol. 33, no. 7, pp. 826–832, 2012.
  84. G. Yang, J. Liu, J. Xu, and X. Li, “Dissimilarity representation learning for generalized zero-shot recognition,” in ACM international conference on Multimedia (MM), 2018, pp. 2032–2039.
  85. L. Wu, C. Shen, and A. v. d. Hengel, “Personnet: Person re-identification with deep convolutional neural networks,” arXiv preprint arXiv:1601.07255, 2016.
  86. L. Wu, Y. Wang, J. Gao, and X. Li, “Where-and-when to look: Deep siamese attention networks for video-based person re-identification,” IEEE Transactions on Multimedia (TMM), vol. 21, no. 6, pp. 1412–1424, 2018.
  87. L. Wu, R. Hong, Y. Wang, and M. Wang, “Cross-entropy adversarial view adaptation for person re-identification,” IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), vol. 30, no. 7, pp. 2081–2092, 2019.
  88. S. Hou and Z. Wang, “Weighted channel dropout for regularization of deep convolutional neural network,” in AAAI Conference on Artificial Intelligence (AAAI), vol. 33, no. 01, 2019, pp. 8425–8432.
  89. W. Tan, C. Ding, P. Wang, M. Gong, and K. Jia, “Style interleaved learning for generalizable person re-identification,” IEEE Transactions on Multimedia (TMM), 2023.
  90. Z. Zhong, L. Zheng, D. Cao, and S. Li, “Re-ranking person re-identification with k-reciprocal encoding,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3652–3661.
  91. T. Xiao, S. Li, B. Wang, L. Lin, and X. Wang, “End-to-end deep learning for person search,” arXiv preprint arXiv:1604.01850, 2016.
  92. X. Pan, P. Luo, J. Shi, and X. Tang, “Two at once: Enhancing learning and generalization capacities via ibn-net,” in European Conference on Computer Vision (ECCV), 2018, pp. 484–500.
  93. E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment: Learning augmentation policies from data,” arXiv preprint arXiv:1805.09501, 2018.
  94. W.-G. Chang, T. You, S. Seo, S. Kwak, and B. Han, “Domain-specific batch normalization for unsupervised domain adaptation,” in IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 7354–7362.
  95. M. Hirzer, C. Beleznai, P. M. Roth, and H. Bischof, “Person re-identification by descriptive and discriminative classification,” in Scandinavian Conference on Image Analysis (SCIA), 2011, pp. 91–102.
  96. C. C. Loy, T. Xiang, and S. Gong, “Time-delayed correlation analysis for multi-camera activity understanding,” International Journal of Computer Vision (IJCV), vol. 90, pp. 106–129, 2010.
  97. D. Gray and H. Tao, “Viewpoint invariant pedestrian recognition with an ensemble of localized features,” in European Conference on Computer Vision (ECCV), 2008, pp. 262–275.
  98. D. Fu, D. Chen, J. Bao, H. Yang, L. Yuan, L. Zhang, H. Li, and D. Chen, “Unsupervised pre-training for person re-identification,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 14 750–14 759.
  99. S. Yang, Y. Zhou, Z. Zheng, Y. Wang, L. Zhu, and Y. Wu, “Towards unified text-based person retrieval: A large-scale multi-attribute and language search benchmark,” in ACM International Conference on Multimedia (MM), 2023, pp. 4492–4501.
  100. X. Liu, H. Zhao, M. Tian, L. Sheng, J. Shao, S. Yi, J. Yan, and X. Wang, “Hydraplus-net: Attentive deep features for pedestrian analysis,” in IEEE International Conference on Computer Vision (ICCV), 2017, pp. 350–359.
Citations (1)

Summary

We haven't generated a summary for this paper yet.