Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lubin-Tate moduli space of semisimple mod p Galois representations for GL_2 and Hecke modules (2306.11863v1)

Published 20 Jun 2023 in math.NT

Abstract: Let $p$ be an odd prime. Let $F$ be a non-archimedean local field of residue characteristic $p$, and let $\mathbb{F}q$ be its residue field. Let $\mathcal{H}{(1)}{\mathbb{F}q}$ be the pro-$p$-Iwahori-Hecke algebra of the $p$-adic group ${\textrm GL_2}(F)$ with coefficients in $\mathbb{F}_q$, and let $Z(\mathcal{H}{(1)}{\mathbb{F}q})$ be its center. We define a scheme $X(q){\mathbb{F}q}$ whose geometric points parametrize the semisimple two-dimensional Galois representations of ${\textrm Gal}(\overline{F}/F)$ over $\overline{\mathbb{F}}_q$. Then we construct a morphism from the spectrum of $Z(\mathcal{H}{(1)}{\mathbb{F}q})$ to $X(q){\mathbb{F}_q}$ generalizing the morphism appearing in \cite{PS2} for $F=\mathbb{Q}_p$. In the case $F/\mathbb{Q}_p$, we show that the induced map from Hecke modules to Galois representations, when restricted to supersingular modules, coincides with Grosse-Kl\"onne's bijection \cite{GK18}. For this, we determine the Lubin-Tate $(\varphi,\Gamma)$-modules associated to absolutely irreducible Galois representations.

Summary

We haven't generated a summary for this paper yet.