Lubin-Tate moduli space of semisimple mod p Galois representations for GL_2 and Hecke modules (2306.11863v1)
Abstract: Let $p$ be an odd prime. Let $F$ be a non-archimedean local field of residue characteristic $p$, and let $\mathbb{F}q$ be its residue field. Let $\mathcal{H}{(1)}{\mathbb{F}q}$ be the pro-$p$-Iwahori-Hecke algebra of the $p$-adic group ${\textrm GL_2}(F)$ with coefficients in $\mathbb{F}_q$, and let $Z(\mathcal{H}{(1)}{\mathbb{F}q})$ be its center. We define a scheme $X(q){\mathbb{F}q}$ whose geometric points parametrize the semisimple two-dimensional Galois representations of ${\textrm Gal}(\overline{F}/F)$ over $\overline{\mathbb{F}}_q$. Then we construct a morphism from the spectrum of $Z(\mathcal{H}{(1)}{\mathbb{F}q})$ to $X(q){\mathbb{F}_q}$ generalizing the morphism appearing in \cite{PS2} for $F=\mathbb{Q}_p$. In the case $F/\mathbb{Q}_p$, we show that the induced map from Hecke modules to Galois representations, when restricted to supersingular modules, coincides with Grosse-Kl\"onne's bijection \cite{GK18}. For this, we determine the Lubin-Tate $(\varphi,\Gamma)$-modules associated to absolutely irreducible Galois representations.