Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy-efficient superparamagnetic Ising machine and its application to traveling salesman problems (2306.11572v1)

Published 20 Jun 2023 in cs.ET, cond-mat.other, and physics.app-ph

Abstract: The growth of artificial intelligence and IoT has created a significant computational load for solving non-deterministic polynomial-time (NP)-hard problems, which are difficult to solve using conventional computers. The Ising computer, based on the Ising model and annealing process, has been highly sought for finding approximate solutions to NP-hard problems by observing the convergence of dynamic spin states. However, it faces several challenges, including high power consumption due to artificial spins and randomness emulated by complex circuits, as well as low scalability caused by the rapidly growing connectivity when considering large-scale problems. Here, we present an experimental Ising annealing computer based on superparamagnetic tunnel junctions (SMTJs) with all-to-all connections, which successfully solves a 70-city travelling salesman problem (4761-node Ising problem). By taking advantage of the intrinsic randomness of SMTJs, implementing a proper global annealing scheme, and using an efficient algorithm, our SMTJ-based Ising annealer shows superior performance in terms of power consumption and energy efficiency compared to other Ising schemes. Additionally, our approach provides a promising way to solve complex problems with limited hardware resources. Moreover, we propose a crossbar array architecture for scalable integration using conventional magnetic random access memories. Our results demonstrate that the SMTJ-based Ising annealing computer with high energy efficiency, speed, and scalability is a strong candidate for future unconventional computing schemes.

Citations (16)

Summary

We haven't generated a summary for this paper yet.