Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KiUT: Knowledge-injected U-Transformer for Radiology Report Generation (2306.11345v1)

Published 20 Jun 2023 in cs.CV and cs.CL

Abstract: Radiology report generation aims to automatically generate a clinically accurate and coherent paragraph from the X-ray image, which could relieve radiologists from the heavy burden of report writing. Although various image caption methods have shown remarkable performance in the natural image field, generating accurate reports for medical images requires knowledge of multiple modalities, including vision, language, and medical terminology. We propose a Knowledge-injected U-Transformer (KiUT) to learn multi-level visual representation and adaptively distill the information with contextual and clinical knowledge for word prediction. In detail, a U-connection schema between the encoder and decoder is designed to model interactions between different modalities. And a symptom graph and an injected knowledge distiller are developed to assist the report generation. Experimentally, we outperform state-of-the-art methods on two widely used benchmark datasets: IU-Xray and MIMIC-CXR. Further experimental results prove the advantages of our architecture and the complementary benefits of the injected knowledge.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhongzhen Huang (15 papers)
  2. Xiaofan Zhang (79 papers)
  3. Shaoting Zhang (133 papers)
Citations (47)