Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds on the genus for 2-cell embeddings of prefix-reversal graphs (2306.11295v3)

Published 20 Jun 2023 in math.CO and cs.DM

Abstract: In this paper, we provide bounds for the genus of the pancake graph $\mathbb{P}_n$, burnt pancake graph $\mathbb{BP}_n$, and undirected generalized pancake graph $\mathbb{P}_m(n)$. Our upper bound for $\mathbb{P}_n$ is sharper than the previously-known bound, and the other bounds presented are the first of their kind. Our proofs are constructive and rely on finding an appropriate rotation system (also referred to in the literature as Edmonds' permutation technique) where certain cycles in the graphs we consider become boundaries of regions of a 2-cell embedding. A key ingredient in the proof of our bounds for the genus $\mathbb{P}_n$ and $\mathbb{BP}_n$ is a labeling algorithm of their vertices that allows us to implement rotation systems to bound the number of regions of a 2-cell embedding of said graphs. All of our bounds are asymptotically tight; in particular, the genus of $\mathbb{P}_m(n)$ is $\Theta(mnnn!)$ for all $m\geq1$ and $n\geq2$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com